简体中文

Medium-long wavelength infrared quantum cascade laser of MOCVD on silicon

1015
2023-08-04 16:26:34
查看翻译
Us researchers report 8.1 μm wavelength quantum cascade laser (QCL) grown on silicon (Si) by MOCVD [S. Xu et al., Applications. Physics Letters, v123, p031110, 2023]. "There are no previous reports of QCL growth on silicon substrates by metal-organic chemical vapor deposition (MOCVD)," commented the team from the University of Wisconsin-Madison, the University of Illinois at Urbana-Champaign and MicroLink Devices Inc.
 
This integration on silicon could lead to the development of chip scale, reliable and mass-producible photonic integrated circuits (PIC). The researchers contrast this with other integration methods such as wafer bonding: "Hybrid integration methods rely on precise alignment to achieve efficient waveguide to laser optical coupling, which in turn requires tight fabrication machining tolerances. Direct integration onto silicon through heteroepitaxy enables mid-infrared (IR) optoelectronic devices to be integrated with mature CMOS-compatible silicon platforms at low cost and high throughput."
 
Mid-infrared QCL is usually grown on indium phosphide (InP). The team paid particular attention to creating a virtual InP substrate on silicon by combining molecular beam epitaxy (MBE) and MOCVD. MOCVD is superior to MBE in production. "The remaining technical challenge is to overcome the defects and epitaxial growing-related problems caused by large lattice constant and thermal expansion mismatches (e.g., about 8% lattice mismatches) and about 50% thermal expansion coefficient mismatches between InP and primary substrates such as silicon," the researchers comment.
The arsenide portion of the template structure (Figure 1) is a limited company grown on a commercial (001) GaP/Si template (supplied by NAsP III/V) using a solid source MBE. The substrate is nominally coaxial and compatible with high-throughput industrial-scale CMOS electronics production. The initial layer consists of an Indium Gallium Arsenide (InGaAs) dislocation filter layer (DFL) sandwiched in GaAs. By keeping the thickness of the initial arsenide layer at 0.5 μm, the researchers sacrificed some of the potential for reducing the penetration dislocation density (TDD). The GaAs layer grows in two steps, first at low temperatures of 500°C and then at higher temperatures (580/610°C for the lower/upper layers, respectively). As far as the upper layers are concerned, one motivation for doing so is to avoid the escape of indium in InGaAs DFL.
 
The upper InP metaseptic buffer (MBL) portion of the template grows through MOCVD and includes four additional DFLS, consisting of three 2nm/37nm InAs/InP pairs.
 
The QCL is completed using MOCVD and has a total epitaxial thickness (including the metamorphic buffer layer and the laser layer) of approximately 13 μm. QCL/Si did not show cracks, which the team believes could be due to two factors: the small sample size of 1.7cmx1.7cm, and the curvature accumulation mitigated by the 800 μm thick silicon substrate. The TDD for the arsenide portion of the template was estimated to be 1.0 x109 / cm-2. InP MBL reduces this to 7.9x108 /cm 2.
Under pulsed operation, the threshold current density on silicon is 22% lower than that of devices grown on bulk InP substrates during the same process run: in the figure, 1.50kA/cm 2 and 1.92kA /cm 2, respectively. The researchers comment: "This may reflect reduced incorporation of silicon dopants within the active nuclear superlattices due to pre-existing defects or differences in the growth temperatures of the silicon and InP substrate surfaces. In addition, uneven growth around the defect site may reduce carrier mobility and tunneling efficiency, which would explain the higher series resistance observed in devices grown on silicon."
 
The higher the voltage required to provide a given current injection in a silicon-based QCL, the higher the series resistance. Despite the higher series resistance, silicon-based QCL also provides higher peak optical output power: 1.64W for silicon-based devices and 1.47W for INP-based devices. The corresponding slope efficiency is 0.72W/A and 0.65W/A, and the electro-optical conversion efficiency is 2.85% and 2.50%, respectively.
 
The emission spectral analysis showed a variety of modes in the wavelength range 7.6-8.3 μm. The maximum peak values of InP and Si based devices are about 8.1 μm and 8.0 μm, respectively. These wavelengths are slightly shorter than the design target of 8.2 μm. The researchers believe that this difference may be due to local growth changes affecting layer thickness, as shown in X-ray diffraction analysis.
 
Source: Laser Network
相关推荐
  • The Institute of Physics, Chinese Academy of Sciences has made significant progress in the research of lithium niobate nanooptics

    In recent years, breakthroughs in the preparation technology of lithium niobate single crystal thin films have greatly promoted the important application of lithium niobate crystals in micro nano optical devices such as optical metasurfaces. However, the high hardness and inactive chemical properties of lithium niobate crystals pose significant challenges to micro nano processing; In addition, con...

    04-15
    查看翻译
  • ABB will add optical sensors to four greenhouse gas monitoring satellites

    ABB has signed a third contract with the global leader in high-resolution space greenhouse gas monitoring, GHGSat, to manufacture optical sensors for its C12, C13, C14, and C15 satellites. It is reported that C12, C13, C14, and C15 satellites are scheduled to be launched into orbit in 2024.These new satellites will join GHGSat's expanding constellation for detecting and quantifying industrial gas ...

    2023-12-06
    查看翻译
  • Molecular orientation is key: a new perspective on revealing electronic behavior using two-photon emission spectroscopy

    Organic electronics has aroused great interest in academia and industry due to its potential applications in OLEDs and organic solar cells, with advantages such as lightweight design, flexibility, and cost-effectiveness. These devices are made by depositing organic molecular thin films onto a substrate that serves as electrodes and exerting their effects by controlling electron transfer between th...

    2024-03-19
    查看翻译
  • Continuation of the Term of President and CEO of Jena Germany

    Recently, the supervisory board of Jenoptik, a leading German laser technology company, announced an important decision: to extend and confirm the term of Dr. Stefan Traeger as Chairman of the Executive Board, with a new term of three years starting from July 1, 2025, and the contract validity period correspondingly extended to June 30, 2028. Dr. Stefan Traeger has been serving as the President ...

    2024-09-06
    查看翻译
  • Using high-speed scanning remelting technology to achieve AlSi10Mg laser powder bed fusion with excellent strength and plasticity properties

    The development of additive manufacturing (AM) has profoundly changed the manufacturing industry, and this technology has been applied in fields such as food, medicine, automotive, and electronic components. Especially in the aerospace field, where extremely lightweight and high-strength (~500mpa) components are required, aluminum alloy additive manufacturing is considered a very promising solutio...

    2024-10-08
    查看翻译