简体中文

Molecular orientation is key: a new perspective on revealing electronic behavior using two-photon emission spectroscopy

806
2024-03-19 16:20:43
查看翻译

Organic electronics has aroused great interest in academia and industry due to its potential applications in OLEDs and organic solar cells, with advantages such as lightweight design, flexibility, and cost-effectiveness. These devices are made by depositing organic molecular thin films onto a substrate that serves as electrodes and exerting their effects by controlling electron transfer between the film and substrate. Therefore, understanding the electronic behavior at the interface between the substrate and the thin film, as well as the electronic properties of organic thin films, is crucial for the further development of organic electronics. In addition, simultaneous observation of photocarrier electrons and intramolecular photoexcitation will provide more insights into organic molecular thin films.

Although a technique called photoelectron spectroscopy has been used to study the static electronic states of organic molecule films in detail, accurately detecting the dynamic behavior of electrons attempting to express their functions in devices has always been challenging and hindering progress.

The research team led by Associate Professor Masahiro Shibuta from the Graduate School of Engineering at Osaka City University used two-photon emission spectroscopy, scanning tunneling microscopy, and low-energy electron diffraction to observe the electronic behavior and surface structure of triphenyl molecular thin films deposited on graphite substrates. The results indicate that TP molecules exhibit a special structure, which adsorbs on the substrate in a standing structure. Under light irradiation, two electrons are injected into TP molecules from the substrate, and photoexcited electrons in the molecular thin film are successfully observed simultaneously in a single sample. In addition, strong photoluminescence was also observed on thin films with a special structure consisting of only one layer of molecules, where the molecules were diagonally adsorbed onto the substrate, similar to the case of TP molecules. It is expected that these results will contribute to the development of new luminescent materials and the further development of functional organic electronic devices.

"2PPE spectroscopy is still a new method for evaluating electronic states, but its drawback is that although well optimized measurements are time-consuming, electronic states are sometimes well observed and sometimes not," said Professor Shibuta. Our research findings emphasize that the visibility of electronic states is closely related to the adsorption mode and electronic properties of molecules on the substrate. In other words, not only the type of molecules, but also their arrangement must be appropriately controlled to create a device that can fully demonstrate their functions. I am pleased that our research provides insights for the development of functional materials for practical applications.

Source: Laser Net

相关推荐
  • ZLDS100, a British high frequency laser displacement sensor, monitors multipoint vibration of silencers

    A muffler is a key component of a car's exhaust system, designed to reduce noise levels and emissions. The vibration of a muffler can have a significant impact on its performance and life. In order to understand the performance and behavior of the muffler, it is necessary to make multi-point vibration measurement. First, it enables engineers to assess the structural integrity and durability of a m...

    2023-08-04
    查看翻译
  • SEMA 2023: Huali's Easy Level Floating Free Laser Fuel Level Transmitter

    Winning the SEMA Best Engineering New Product Award is not an easy task. Therefore, it said a lot about Huali's new non floating fuel transmitter bringing hardware home. The Easy Level fuel level sender is a brand new design that does not rely on traditional float arm settings, but uses a frikken laser beam to measure the fuel level in the tank.More precisely, Easy Level uses LiDAR technology to m...

    2023-11-03
    查看翻译
  • HieFo launches high-power DFB laser chip to enter coherent optical transmission market

    Recently, HieFo, a leading enterprise in the field of optical communication, officially launched its HCL30 DFB laser chip, designed specifically to meet the stringent requirements of coherent optical transmission. This chip combines efficient optical output power with excellent narrow linewidth performance, providing multiple industry standard wavelength options in the O-band and C-band, bringin...

    2024-09-13
    查看翻译
  • The researchers used ultrafast lasers to create nanoscale photonic crystals

    The optical properties of photonic crystals are closely related to their lattice constants, which are usually required to be in the same order of magnitude as the operating wavelength. In a crystal material, the photonic crystal structure is formed by the periodic arrangement in space of units whose dielectric constant is different from that of the crystal itself, and whose lattice constant depend...

    2023-08-04
    查看翻译
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    查看翻译