简体中文

Transforming solid-state single photon sources using multifunctional metalenses

1056
2024-02-26 14:07:35
查看翻译

Quantum photonics is one of the important research directions in the quantum field, which utilizes the unique properties of light at the quantum level. The core of this field is the deterministic single photon source, which sequentially emits individual photons through spontaneous emission and is the cornerstone of quantum communication, computing, and secure encryption. However, under environmental conditions, the interaction between light and solid-state single photon emitters (SPE, such as quantum dots, diamond nitrogen vacancy color centers, defects in two-dimensional materials) is very weak and difficult to control. 

Therefore, the resulting single photon source has many problems, such as low collection efficiency, lack of directionality, and poor polarization/phase characteristics. To create complex quantum optical states and fully utilize the multiple degrees of freedom of a single photon (such as polarization and orbital angular momentum), it is necessary to construct a complex optical system composed of a series of discrete components (such as polarizers, wave plates, lenses, spatial light modulators, etc.). This method is inherently unfriendly due to its large configuration, difficult alignment, instability, high loss, and limited functionality.

Schematic diagram of multi-dimensional manipulation of hBN quantum emission using multifunctional metalenses


Design and characterization of polarization beam splitting metalenses
Optical metasurfaces are extremely thin nanoantennas arranged in carefully designed patterns, with unprecedented potential in manipulating all properties of classical and non classical light, providing a unique and promising platform for quantum nanophotonics. Especially, optical metasurfaces provide a new platform for generating and manipulating quantum states of photons, and offer new methods for controlling quantum light in integrated quantum photon devices.

It is reported that a joint research team led by Dr. Chi Li and Dr. Haoran Ren from Monash University, Professor Junsuk Rho from Pohang University of Science and Technology, and Professor Igor Aharonovich from Sydney University of Science and Technology has developed a new type of multifunctional metalenses, redefining the control of SPE quantum emission in hexagonal boron nitride (hBN) at room temperature. This research achievement showcases the rapid development of quantum photonics and has been published in the eLight journal under the title "Arrarly structured quantum emission with multifunctional metals".

This designed superlens can simultaneously map quantum emissions from superbright defects in hBN and imprint any wavefront onto the orthogonal polarization state of the light source, while shaping directionality, polarization, and orbital angular momentum (OAM). Therefore, this hybrid quantum superlattice lens system can simultaneously manipulate multiple degrees of freedom of the quantum light source. In its design, researchers used low loss hydrogenated amorphous silicon as the material for constructing the metalens unit. The extinction coefficient of this material in the hBN SPE emission spectrum can be ignored, thus achieving a collection efficiency of up to 0.3. Using this design, researchers created three different polarization separation superlenses and measured them using SPE to verify their ability to simultaneously control the directionality and polarization of single photon emission. In addition, researchers have also implemented more complex superlenses that can encode different helical phase wavefronts (OAM modes) in addition to directionality and polarization.

This study demonstrates the ability of superlenses to manipulate the quantum emission of hBN defects, allowing arbitrary wavefronts to be imprinted onto orthogonal polarization states. The multifunctionality of metalenses provides an important foundation for achieving advanced quantum computing, secure communication, and enhanced quantum sensing. Researchers believe that this quantum metasurface has the excellent ability to independently and synchronously control multiple degrees of freedom of photons, and will rapidly develop as a unique enabling platform for generating, routing, and manipulating quantum optical states.

Despite the pioneering nature of this study, the multifunctional metalens used to manipulate single photon emission from hBN SPE remains an external component, i.e. separate from the photon source. By adding transparent spacers, hBN SPE can be directly integrated into the superlens, but adjusting the device architecture and arrangement method is not an easy task and further research is needed. In addition, there is still room for development of integrated quantum superlattice surface chips that can simultaneously generate photon states and engage in high-dimensional quantum entanglement. In addition, the static properties of quantum metasurfaces that have been demonstrated so far severely limit their functional range, thus requiring the development of spatiotemporal quantum metasurfaces to provide new research avenues and breakthroughs for planar quantum photonics.

Source: China Optical Journal Network

相关推荐
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Application in the Transient Optics Research Room of Xi'an Institute of Optics and Mechanics, Chinese Academy of Sciences has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in Laser&Photonics Reviews (IF=9.8), the top journal of the first district of the Chine...

    04-30
    查看翻译
  • ZLDS100, a British high frequency laser displacement sensor, monitors multipoint vibration of silencers

    A muffler is a key component of a car's exhaust system, designed to reduce noise levels and emissions. The vibration of a muffler can have a significant impact on its performance and life. In order to understand the performance and behavior of the muffler, it is necessary to make multi-point vibration measurement. First, it enables engineers to assess the structural integrity and durability of a m...

    2023-08-04
    查看翻译
  • A review of research on residual stresses in carbon steel welding

    Researchers from the University of Witwatersrand in South Africa have reported a review of research on residual stresses in carbon steel welding: formation mechanisms, mitigation strategies, and advances in advanced post weld heat treatment technologies. The relevant paper titled "A comprehensive review of residual stresses in carbon steel welding: formation mechanisms, mitigation strategies, and ...

    04-12
    查看翻译
  • Mazak will showcase high-speed fiber lasers on Tube 2024

    Yamazaki Mazak designed the FT-150 fiber laser tube processing machine for high-speed cutting of small and medium-sized diameter pipes, for use in Tube 2024. The machine tool will be controlled by a new type of pipe cutting CNC, which will be exhibited for the first time in Europe.Tube 2024 will be held from April 15th to 19th in Dusseldorf, Germany. Mazak will be exhibited at booth C17 in Hall 5....

    2024-03-16
    查看翻译
  • What are double- and triple-stack hybrid stepper motors

    Of the three primary stepper motor designs — permanent magnet, variable reluctance, and hybrid — hybrid stepper motors are arguably the most popular in industrial applications, combining the best performance characteristics of permanent magnet and variable reluctance types.Hybrid stepper motors are constructed with a rotor made of two sections, or cups, with a permanent magnet between ...

    2023-09-16
    查看翻译