简体中文

Hyperspectral imaging technology: a comprehensive guide from principles to applications

196
2024-04-16 17:35:15
查看翻译

Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.

Introduction to hyperspectral imaging
Hyperspectral imaging is a technique that utilizes spectral information to obtain the spectrum of each pixel in an image. Compared to traditional imaging systems, hyperspectral imaging can provide more detailed information on object and surface features. By analyzing the unique spectral characteristics of objects and materials, it is possible to identify and quantify them.

Spectral imaging systems can capture electromagnetic spectra ranging from visible light to infrared, providing rich spectral data. This technology is widely used in fields such as food quality and safety, waste classification and recycling, and drug production control.

2. Working principle
Hyperspectral imaging utilizes an imaging spectrometer (also known as a hyperspectral camera) to collect light from a scene and decompose it into various wavelengths or spectral bands. Through this method, a two-dimensional image of the scene can be obtained and the spectral information of each pixel can be recorded. In the final hyperspectral image, each pixel corresponds to a unique spectrum, similar to a fingerprint.

This unique spectrum can be used to identify and quantify objects and materials in the scene. Due to the different reactions of different materials to light, their spectral characteristics are also different. Therefore, object recognition and classification can be achieved through spectra.

3. Information provided
The hyperspectral imaging system provides rich spatial and spectral information, which can be used to solve the problems of "what" and "where". Spectral information allows for recognition and classification of objects, while spatial information provides data on object distribution and regional separation.

Compared to traditional RGB cameras, hyperspectral imaging can provide more detailed and rich information. By analyzing thousands or even hundreds of thousands of spectra, large-scale hyperspectral data cubes containing position, wavelength, and time related information can be obtained, enabling detailed characterization of objects.

4. Application field
Hyperspectral imaging technology has a wide range of applications in various fields:
-Environmental monitoring: used to monitor land use, vegetation health, and water quality changes, as well as detect early signs of ecological degradation.
-Mineral exploration: used to create mineral deposit maps, detect mineral composition and grade.
-Quality control: can be used for non-destructive testing and grading of food, as well as detection of pollutants and defects in industrial products.
-Waste management: can be used to separate various materials and increase the value of recycled materials.
-Agriculture: used to evaluate crop health and yield, monitor soil moisture and nutrient content.
-Military surveillance: used to detect and identify hazardous materials.

epilogue
Hyperspectral imaging technology, as a powerful tool, plays an important role in scientific research, industrial production, and environmental monitoring. With the continuous advancement of technology and the expansion of application scenarios, it is believed that hyperspectral imaging will play an increasingly important role in the future and make greater contributions to the development of human society.

Source: Sohu

相关推荐
  • Shanghai Microsystems Institute has developed a high-speed photon detector with distinguishable photon numbers

    Recently, Li Hao and You Lixing's team from the Chinese Academy of Sciences Shanghai Institute of Microsystems and Information Technology developed an ultrahigh speed, photon number resolvable optical quantum detector with a maximum count rate of 5GHz and a photon number resolution of 61 by using the sandwich structure superconducting nanowires and multi wires working in parallel. The related rese...

    2024-07-12
    查看翻译
  • The construction of Hefei Advanced Light Source Project held a launch ceremony, expected to be completed and released in 5 years

    Recently, in the Future Science City of Hefei City, Anhui Province, the National Major Science and Technology Infrastructure Project and Supporting Projects of Hefei Advanced Light Source announced the start of construction, with a planned land area of approximately 656 acres. The first phase of the project is expected to be completed by September 2028.After completion, it will become an internati...

    2023-09-23
    查看翻译
  • The application of laser technology in the automated production line of energy storage/power battery PACK

    Lithium batteries are highly favored in the fields of 3C digital and new energy vehicles due to their high energy density, environmental characteristics, and fast charging and discharging. Welding, as a crucial link in the manufacturing process of lithium batteries, has a decisive impact on battery performance and quality. Laser welding technology is increasingly playing an important role in the l...

    2023-12-18
    查看翻译
  • Nanchang University research progresses in acoustic resolution photoacoustic microimaging enhancement

    As a promising imaging modality that combines the high spatial resolution of optical imaging and the deep tissue penetration ability of ultrasound imaging, photoacoustic microscopy (PAM) has attracted a lot of attention in the field of biomedical research, and has a wide range of applications in many fields, such as tumor detection, dermatology, and vascular morphology assessment. Depending on the...

    2024-09-18
    查看翻译
  • Chip based comb laser illumination and unlocking of new applications

    Researchers have shown that dissipative Kerr solitons (DKS) can be used to create chip based optical frequency combs with sufficient output power for optical atomic clocks and other practical applications. This progress may lead to chip based instruments being able to perform precise measurements that were previously only possible in a few specialized laboratories.Gr é gory Moille from the ...

    2023-08-30
    查看翻译