简体中文

New photonic nanocavities open up new fields of optical confinement

453
2024-02-12 20:36:06
查看翻译

In a significant leap in quantum nanophotonics, a team of European and Israeli physicists introduced a new type of polarized cavity and redefined the limits of light confinement. This groundbreaking work was detailed in a study published yesterday in Natural Materials, showcasing an unconventional photon confinement method that overcomes the traditional limitations of nanophotonics.

For a long time, physicists have been searching for ways to force photons into increasingly smaller volumes. The natural length scale of photons is wavelength, and when photons are forced into cavities much smaller than the wavelength, they actually become more "concentrated". This concentration enhances the interaction with electrons and amplifies the quantum process inside the cavity. However, despite significant success in limiting light to deep sub wavelength volumes, dissipation effects remain a major obstacle. The photons in the nanocavity are absorbed very quickly, much faster than the wavelength, which limits the applicability of the nanocavity in some of the most exciting quantum applications.

The research team led by Professor Frank Koppens from ICFO in Barcelona, Spain, has addressed this challenge by creating nanocavities with unparalleled sub wavelength volume and extended lifetime combinations. These nanocavities, with dimensions smaller than 100x100nm2 in area, are only 3nm thin, limiting the duration of light much longer. The key lies in the use of hyperbolic phonon polaritons, which are unique electromagnetic excitations that occur in two-dimensional materials that form cavities.

Unlike previous studies on cavities based on phonon polaritons, this work utilizes a new indirect constraint mechanism. The nanocavity is made by drilling nanoscale holes on a gold substrate, and has the extremely high accuracy of a helium focused ion beam microscope. After drilling, hexagonal boron nitride is transferred to its top. HBN supports electromagnetic excitation called hyperbolic photon polaritons, which are similar to ordinary light but can be confined to very small volumes. When polaritons pass above the metal edge, they are strongly reflected by the metal, which limits them. Therefore, this method avoids directly shaping hBN while maintaining its original mass, thereby achieving highly restricted and long-lived photons in the cavity.

This discovery began with a chance observation during the use of near-field optical microscopy to scan 2D material structures in another project. Near field microscopy allows for excitation and measurement of polaritons in the mid infrared range of the spectrum, and researchers have noticed that these polaritons reflect abnormally strongly from the edges of the metal. This unexpected observation sparked deeper research, enabling a unique constraint mechanism and its relationship with the formation of nanorays.

However, the team was very surprised when producing and measuring cavities. "Experimental measurements are usually worse than theory suggests, but in this case, we find that the performance of the experiment is better than optimistic simplified theoretical predictions," said Dr. Hanan Herzig Sheinfux from the Department of Physics at the University of Bayland, the first author. This unexpected success has opened the door to new applications and advancements in quantum photonics, breaking through what we consider possible boundaries.

Dr. Herzig Sheinfux conducted this study with Professor Koppens during his postdoctoral studies at ICFO. He plans to use these cavities to observe previously thought impossible quantum effects and further investigate the interesting and counterintuitive physics of hyperbolic phonon polariton behavior.

Source: Laser Net

相关推荐
  • E&R Engineering launches a mold cutting solution at Semicon SEA 2024

    Advanced laser and plasma solution provider E&R Engineering Corp. has confirmed that they will participate in the Semiconductor SEA 2024 event held in Kuala Lumpur, Malaysia. With 30 years of focus in the semiconductor industry, E&R has developed a wide range of plasma and laser technologies. At Semicon SEA 2024, they will showcase their latest solutions, including:Plasma Cutting - Small M...

    2024-05-20
    查看翻译
  • Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

    A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirecti...

    2024-04-29
    查看翻译
  • Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped cont...

    2024-03-19
    查看翻译
  • Diamond Light Source and NPL reach a new five-year agreement

    Recently, two leading UK scientific institutions, Diamond Light Source and National Physical Laboratory (NPL), have reached a new five-year agreement to promote joint collaborative efforts.The agreement was approved by signing a Memorandum of Understanding (MoU), which will bring these two institutions together.Diamond Light Source is a national synchrotron facility in the UK known for generating ...

    2024-04-25
    查看翻译
  • Sales and order volume of Deutsche Bahn Group have decreased

    Recently, TRUMPF, a leading global provider of machine tools and laser technology solutions, released preliminary data for the 2023/24 fiscal year: compared to the previous fiscal year, sales decreased by about 4% year-on-year to 5.2 billion euros; The order amount decreased by 10% to 4.6 billion euros. The Tongkuai Group ended its 2023/24 fiscal year on June 30, 2024, with a decrease in both s...

    2024-07-22
    查看翻译