简体中文

Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

257
2024-04-29 16:03:41
查看翻译

A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirectional matching transparent metamaterials, which can hide large objects in free space.

The research findings were published in the National Science Review under the title of "Omnidirectional Transformation Optical Devices with All Parameters". Dr. Yuan Gao from Zhejiang University was the first author, and Professor Yu Luo, Professor Chen Hongsheng, and Professor Ye Dexin were the corresponding authors.

In 2006, Professor Pendry from Imperial College London, UK, proposed transformation optics, which describes the correspondence between electromagnetic wave propagation paths and material composition parameters, providing a universal and powerful method for controlling electromagnetic waves.

In the past decade, transformation optics has developed rapidly, and various new optical devices have been designed through transformation optics, such as invisibility cloaks, electromagnetic illusion devices, and concentrators. However, the composition parameters of optical media transformation are anisotropic and often uneven or have singular values, making it difficult to achieve.

For example, the omnidirectional invisibility cloak achieved through experiments so far has always simplified the material parameters. Simplified design sacrifices impedance matching, thereby reducing the performance of transformation optical devices.

To address these issues, the research team designed a two-dimensional all parameter omnidirectional planar invisibility cloak based on linear transformation optics, which is composed of only two homogeneous materials. The composition parameters of the first material are anisotropic, with both zero and extreme values, and electromagnetic waves propagating along the optical direction have infinite phase velocities.

Design an ideal omnidirectional cloak in free space. (a) Stealth design based on linear transformation optical elements. (b) A schematic diagram of the actual cloak. (c) Simulate (I, II, III) and measure (IV, V, VI) stealth performance.

By using this material, electromagnetic waves can bypass the invisible region, achieving omnidirectional impedance matching and zero phase delay. The second material also has anisotropic composition parameters, which can achieve phase compensation under omnidirectional impedance matching, and electromagnetic waves propagating in the optical direction have sub cavity phase velocity.

In the experimental verification, researchers used these two materials with TM polarization wave full parameter composition parameters.
The first material is achieved using a subwavelength metal patch array with Fabry Perot resonance, while the second material is achieved using a structure composed of traditional I-type electric resonators and split ring resonators.

Finally, the researchers measured the magnetic field around the omnidirectional cloak composed of the first two materials under different angles of TM polarization wave incidence, and the results showed that it has excellent stealth performance.

This study presents for the first time a fully parametric omnidirectional invisibility cloak in free space, which can hide large objects under any incident light. The achieved invisibility cloak can be immediately used to suppress the scattering cross-section of targets in radar communication and bistable detection.

The method proposed in this study also has a profound impact on the practical application of other full parameter transformation optical devices.

Source: Physicist Organization Network

相关推荐
  • The improvement of additive manufacturing through artificial intelligence, machine learning, and deep learning

    Additive manufacturing (AM) has made it possible to manufacture complex personalized items with minimal material waste, leading to significant changes in the manufacturing industry. However, optimizing and improving additive manufacturing processes remains challenging due to the complexity of design, material selection, and process parameters. This review explores the integration of artificial int...

    02-24
    查看翻译
  • Europe builds an independent supply chain for Alexander laser crystals for space missions and atmospheric research

    Recently, companies from Lithuania, Italy, and Germany have reached a new milestone in the European independent space mission - based on the Galactic project, they have developed a supply chain for Alexandrite laser crystals in Europe to study changes in the atmosphere and Earth's surface.The high-power Alexander laser crystals and coatings developed in the GALACTIC project will be used to collect...

    2023-12-22
    查看翻译
  • The use of laser equipment to recover refractory materials can reduce 800,000 tons of carbon dioxide emissions

    Refractory material can withstand high temperature above 1500℃. They are essential materials for industrial furnaces that produce glass or ceramics, non-ferrous metals and steel. The service life of manufactured refractory products can range from a few days to many years, depending on the material, the temperature in the melting vessel and other operating parameters. As a result, although ...

    2023-09-04
    查看翻译
  • The LiDAR SLAM navigation system uses laser sensors to realize real-time 3D mapping of the environment

    Robotic lawn mowers are becoming increasingly popular due to their convenience and ability to save time and effort. Although robotic lawnmowers have made significant progress over the years, many robots still require users to lay perimeter wires to define the mowing area and remove any obstructions from the lawn to ensure the mower doesn't get stuck or damaged.Well, that's not the case with the Ne...

    2023-09-11
    查看翻译
  • NASA will demonstrate laser communications from the space station

    NASA's ILLUMA-T payload communicates with the LCRD via laser signals.NASA uses the International Space Station, a spacecraft the size of a football field orbiting the Earth, to learn more about living and working in space. For more than 20 years, the space station has provided a unique platform for investigation and research in the fields of biology, technology, agriculture and more. It is home to...

    2023-09-02
    查看翻译