简体中文

Creating Laser Sensors with Soap Bubbles: Discovery of Game Changing Rules

914
2023-11-20 14:22:03
查看翻译

Scientists from the University of Ljubljana in Slovenia have made groundbreaking discoveries and discovered a new innovative application of soap bubbles. By transforming these seemingly simple entities into laser sensors, they unleash the potential to detect electric fields and pressures. This extraordinary development has opened the door to various possibilities.

Researchers at the University of Ljubljana use regular hand sanitizers or bubble mixtures suitable for children to create bubble lasers. By adding a small amount of fluorescent dye to the mixture, they can generate laser light from within the bubbles. Unlike traditional lasers that rely on mirrors for amplification, the internal volume of bubbles becomes a decisive factor in this new laser technology. This unique characteristic provides the necessary space for light to reflect back and forth, which is a key component of lasers.

The addition of fluorescent dyes enables bubbles to be used as amplifiers of light. When illuminated, the dye emits light, forming the basic components required for laser generation. Researchers use optical fibers and focusing lenses to guide external light onto bubbles. This triggers the bubble to generate its own laser.

An important aspect of this breakthrough is the extraordinary sensitivity of bubble lasers. They can detect pressure changes as small as 0.001% of atmospheric pressure. Even without thunderstorms generating electricity, they can sense the electric field in the atmosphere on clear days.

The application of this technology is extensive and exciting. The team creatively combined "micro ring lasers" together, opening up new possibilities for future development. The results of this discovery have sparked the interest and enthusiasm of experts in the field, who believe that it may lead to the emergence of various new applications.

FAQ:
Q: How do researchers convert soap bubbles into laser sensors?
Answer: Researchers added a small amount of fluorescent dye to ordinary hand sanitizers or bubble mixtures suitable for children, creating a medium for laser generation.

Q: How does a bubble laser work?
Answer: The internal volume of the bubble, coupled with the addition of fluorescent dyes, allows the bubble to serve as an amplifier of light. External light triggers bubbles to generate their own laser.

Q: What are the unique features of these bubble lasers?
Answer: Bubble lasers have unprecedented sensitivity and can detect pressure changes as low as 0.001% of atmospheric pressure. Even on sunny days, they can sense electric fields in the atmosphere without generating electricity from thunderstorms.

Q: What are the potential applications of bubble lasers?
Answer: This discovery opens the door to a wide range of new applications that need to be explored and developed.

Source: Laser Network

相关推荐
  • Statsndata predicts that the light detection and ranging market will experience vigorous development globally in 2029

    The Light Detection and Ranging (LiDAR) market embodies the technology of remote sensing, surveying, and the use of laser pulses to measure distance and generate detailed three-dimensional models of objects, terrain, and environment.The LiDAR system emits a laser beam and measures the time required for the light to return to the surface, creating accurate and high-resolution digital representation...

    2023-08-31
    查看翻译
  • Researchers have developed the world's smallest silicon chip quantum photodetector

    Researchers at the University of Bristol have made significant breakthroughs in expanding quantum technology by integrating the world's smallest quantum photodetector onto silicon chips. The paper "A Bi CMOS Electron Photon Integrated Circuit Quantum Photodetector" was published in Science Advances.In the 1960s, scientists and engineers were able to miniaturize transistors onto inexpensive microch...

    2024-05-21
    查看翻译
  • New nanophotonic circuits demonstrate the potential of quantum networks

    The Purdue University team in the United States has captured alkali metal atoms (cesium) in integrated photonic circuits, which can serve as transistors for photons (the smallest energy unit of light). These captured atoms demonstrate for the first time the potential of cold atom integrated nanophotonic circuits to construct quantum networks. The research results were published in the latest issue...

    2024-08-14
    查看翻译
  • Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped cont...

    2024-04-17
    查看翻译
  • What is field assisted additive manufacturing?

    Dr. Tan Chaolin from the Singapore Institute of Manufacturing Technology, in collaboration with China University of Petroleum, Shanghai Jiao Tong University, Princeton University, University of Malta, Huazhong University of Science and Technology (Professor Zhang Haiou), University of California, Irvine, Hunan University, and EPM Consulting, published an article titled "Review on Field Assisted Me...

    2024-07-29
    查看翻译