简体中文

SILICON AUSTRIA LABS and EV GROUP Strengthen Cooperation in Optical Technology Research

870
2023-11-15 14:06:51
查看翻译

EV Group, a leading supplier of wafer bonding and lithography equipment for the MEMS, nanotechnology, and semiconductor markets, and Silicon Austria Labs, a leading electronic systems research center in Austria, announced that SAL has received and installed multiple EVG lithography and photoresist processing systems in its MicroFab at the R&D cleanroom facility in Filach, Austria.

These devices are part of the strengthened cooperation between the two companies, aimed at accelerating the development and deployment of advanced optical technologies for heterogeneous integrated applications, including wafer level optical devices for micro cameras and mirrors, diffractive optical devices, and automotive optical devices for autonomous driving and automotive lighting.

The newly installed EVG system includes LITHOSCALE maskless exposure system, EVG7300 automated SmartNIL nanoimprinting and wafer level optical system, as well as multiple complementary photoresist processing systems. These systems incorporate multiple existing EVG bonding, mask alignment, and lithography systems from SAL, including the first installation of the next-generation 200mm version of the EVG150 automatic photoresist processing system. Compared to the previous generation platform, this system provides higher throughput, greater flexibility, and smaller tool footprint.

In addition, SAL has been working closely with the technical development and application engineering teams at EVG headquarters, including the NILPhotonics capability center, to leverage EVG's equipment and process knowledge to develop processes that can be transferred and expanded to mass production.

Dr. Mohssen Moridi, Director of Microsystem Research at Silicon Australia Labs, stated: We have recently been immersed in a series of cutting-edge research and development projects, involving metaoptics, integrated photonics, and MEMS, which require the use of advanced lithography and bonding tools. Through our valuable collaboration with EVG, we have obtained tools with excellent reliability and accuracy, which are crucial for successful research and development work. It is worth noting that the EVG7300 SmartNIL system has become a key tool that can be used on a large scale for emerging photonics and MEMS devices Produce nanostructures. Its applications extend to multiple fields such as intelligent lighting systems, AR/VR, automotive optics, telecommunications, and quantum technology.

SAL was one of the first customers to obtain the new EVG7300 system, which is EVG's most advanced solution that combines multiple UV based process capabilities, such as nanoimprint lithography, lens forming, and lens stacking. The EVG7300 is specifically developed to meet the advanced research and production needs of various emerging applications, involving micro and nano patterns as well as functional layer stacking.

EVG's revolutionary LITHOSCALE maskless exposure system meets the lithography needs of markets and applications that require high flexibility or product changes. It solves traditional bottlenecks by combining powerful digital processing capabilities, high structured resolution, and throughput scalability. It is very suitable for rapid prototyping design, providing fast turnaround and development cycle time.

Thomas Glinner, Technical Director of EV Group, stated: Silicon Australia Labs is a leading research center in the field of optical miniaturization and heterogeneous integration, and a strategic partner of EV Group. The latest shipment and installation of our advanced lithography and photoresist processing systems further strengthen our partnership and support SAIC's ability to develop future key technologies and apply our leading solutions to practical industrial applications.

Source: Laser Network

相关推荐
  • Xinjiang Institute of Physical and Chemical Technology has established the largest database of computational nonlinear optical crystal materials to date

    Modern laser technology urgently requires nonlinear optical materials that can generate coherent light through second harmonic generation. However, only a small portion of the nonlinear optical properties of non centrosymmetric crystal materials have been experimentally or theoretically studied, and exploration for high-performance nonlinear optical crystal materials is still very limited.Recentl...

    2023-10-24
    查看翻译
  • South Korean DE&T will open new subsidiaries in the United States and Canada

    Recently, DE&T, a South Korean manufacturer of secondary batteries and display laser equipment, announced that the company will further expand its overseas business by opening new subsidiaries in the United States and Canada. According to its claim, this move is to carry out maintenance services for laser equipment locally. As of now, DE&T's overseas subsidiaries have increased from two to...

    04-08
    查看翻译
  • The method of reducing the linewidth of laser beam by more than 10000 times

    A project at Macquarie University has demonstrated a way to narrow the linewidth of a laser beam by a factor of over ten thousand.Published in APL Photonics, the technique offers a promising route toward ultra-narrow linewidth lasers for potential use in a wide range of pump-pulse systems.Laser linewidth measures how precisely a beam of light maintains its frequency and color purity, and narrow-li...

    07-28
    查看翻译
  • Single photon avalanche diode for millimeter level object recognition using KIST

    LiDAR sensors are crucial for implementing modern technologies such as autonomous driving, AR/VR, and advanced driving assistance systems. For example, more accurate shape detection in AR/VR devices and smartphones depends on the improved range resolution of medium and short range LiDAR. This requires a single photon detector with improved timing jitter performance.LiDAR calculates the distance an...

    2024-02-03
    查看翻译
  • FGI utilizes Fraunhofer's LiDAR technology for maritime surveying

    The highly respected Finnish Institute of Geospatial Studies will utilize the advanced LiDAR system developed by the Fraunhofer Institute of Physical Measurement Technology for future ocean surface surveys. Significant progress is expected in data quality and on-site measurement efficiency, and the state-owned research department is collaborating with Fraunhofer IPM on a joint project. They are jo...

    2024-02-14
    查看翻译