简体中文

The United States is expected to use "AI+lasers" to deal with space debris in the future

575
2023-10-20 13:51:14
查看翻译

Due to the increasing threat of space debris in low Earth orbit around the Earth, space agencies around the world are becoming increasingly concerned about this. According to a new study funded by the National Aeronautics and Space Administration (NASA), it may be possible to send space debris that may be at risk of colliding with orbiting spacecraft to safer orbits through a laser network deployed in space in the future, the US "Space" website said on the 19th.

The report states that space debris has an increasing impact on the safety of spacecraft in various countries. When Amazon launched two internet prototype satellites on the 6th, it was forced to delay the launch for 6 minutes to avoid colliding with space debris.

In July of this year, due to the same reasons, the launch of India's historic "Lunar Ship 3" probe was also forced to be postponed. Although space debris has been a concern for decades, efforts to address this space debris have only recently truly begun to get back on track. The idea proposed by the Space Systems Warfare Research Laboratory at the University of West Virginia is to install artificial intelligence (AI) controlled space-based lasers on satellites or other specialized platforms for monitoring space debris. When a space debris is suspected of colliding with valuable space assets such as the International Space Station or satellites, laser pulses are used to push them into safer orbits.

According to the report, the statement released by the laboratory states: "Our goal is to develop a reconfigurable space-based laser network and AI algorithms. These algorithms will make this network possible and maximize its benefits." The plan has received funding from NASA and is still in its early stages. The ultimate goal is that the system will decide on which lasers to use to target a certain space debris, At the same time, ensure that the generated trajectory does not collide.

It is said that measuring the risk level of space debris is quite difficult because not every object in orbit can be tracked. According to data from the European Space Agency, the radar system on the Earth's surface is currently tracking approximately 34600 space debris, but there may still be 130 million fragments in orbit that cannot be accurately detected or tracked due to their small size. The report states that although the mass and volume of these space debris are small, their speed is fast enough to pose a threat to orbiting satellites or spacecraft.

Previously, countries had a preference for clearing space debris, but whether it was using high-strength materials to create "space debris nets" for salvage or using high-energy lasers for burning, there were limitations. In contrast, using space-based lasers to process small space debris may be more practical, as they can be sent into predetermined orbits using laser pulse irradiation, with relatively low power requirements for lasers. The report states that using multiple lasers can more effectively alter the trajectory of space debris, which "cannot be achieved by a single laser".

In March of this year, NASA released a report showing that space-based lasers are not affected by weather compared to ground based lasers. The report states that this AI powered space cleaning system not only has cost advantages, but its precise tracking ability for space debris also helps improve the safety of space launches.

Source: Global Times

相关推荐
  • Munich Laser World of Photonics 2025 Grand Opening

    On June 24-27, 2025, the global optoelectronic event Laser World of Photonics 2025 was grandly opened in Munich, Germany. This exhibition brings together over 1350 companies from 43 countries, making it the largest in history. Among them, international laser giants Coherent, IPG, TRUMPF, and MKS showcased their latest breakthroughs and future directions in laser technology with multiple heavyweigh...

    06-25
    查看翻译
  • Application of Laser Welding Technology in Ceramic Substrate Industry

     Ultra short laser pulses for local welding (Source: Fraunhofer IOF)With the accelerated evolution of electronic devices towards high power, high frequency, and miniaturization, ceramic substrates have become core materials in fields such as power semiconductors, 5G communications, and new energy vehicles due to their excellent thermal conductivity, insulation, and high temperature resistance. H...

    03-17
    查看翻译
  • LightSolver announces the launch of the LPU100 laser computing system

    LightSolver, a laser based computing company, announced that it is a breakthrough in quantum inspired high-performance computing.Its LPU100 system utilizes the power of 100 lasers to solve optimization problems, challenging the processing time of quantum and supercomputers. The laser array of LPU100 represents 100 continuous variables and can solve up to 120100 combinations of problems, enabling ...

    2024-03-22
    查看翻译
  • The fiber laser system overcomes outdated issues through a PC based EtherCAT control platform

    In order to maintain relevance and success, companies with a long history must respect their past while not ignoring the future. This is the method adopted by Cincinnati Corporation (CI), a metal processing machinery manufacturer based in Harrison, Ohio, since its establishment in the late 1890s.The company is carefully considering technological changes. Incorrect selection of control hardware, ne...

    2024-05-25
    查看翻译
  • Laser printing on fallen leaves can produce sensors for medical and laboratory use

    The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The t...

    2024-05-16
    查看翻译