Tiếng Việt

Hamamatsu Photonics completes construction of new factory area

213
2024-08-01 14:22:45
Xem bản dịch

Recently, Hamamatsu Photonics in Japan completed the construction of a new building at Miyakoda Manufacturing Co., Ltd. in Hamami ku, Hamamatsu City. The completion ceremony was held on July 29th, and the factory will start full production in November 2024, increasing overall production capacity by 2.5 times.

Source: Hamamatsu Photonics
It is reported that Hamamatsu Photonics focuses on the development, manufacturing, and sales of semiconductor lasers, laser oscillators, and application products using various lasers in the fields of measurement, analysis, processing, FA, medical, etc. After the completion of the new factory, its semiconductor laser assembly and post-processing processes will be integrated into the new plant, with an expected annual production capacity of about 25 million units (equivalent to a single chip).

The factory started construction in May 2023, was completed in July 2024, and started production in November. The total investment is approximately 4.1 billion yen (equivalent to 194 million yuan), with a total construction area of 6720 square meters, expected to accommodate about 160 employees.

For the construction of the new factory, Hamamatsu Photonics stated that it will optimize the workflow between manufacturing processes, while introducing the most advanced manufacturing and testing equipment to promote process automation and efficiency, and improve productivity.

As is well known, semiconductor lasers are the core components of high-performance sensor LiDAR. In recent years, the application of LiDAR technology in the automotive industry has been rapidly expanding, especially with the popularity of autonomous driving and ADAS (Advanced Driver Assistance Systems), greatly driving the growth of the LiDAR market.

According to YOLE data, the global market size of automotive LiDAR has reached $538 million in 2023, and it is expected to grow to $3.632 billion in 2029, with a compound annual growth rate of up to 38%. This indicates that the LiDAR market will maintain a strong growth trend in the coming years.

With the rapid growth of the LiDAR market, there will also be a surge in demand for semiconductor lasers. Hamamatsu Photonics is building a new factory to meet this market demand and expand the sales of semiconductor lasers.

However, some in the industry believe that although the new factory of Hamamatsu Photonics was completed in July, the production increase has been delayed, which may mean that the demand growth for laser radar used in autonomous driving has been postponed, and the speed of equipment introduction will be slower than initially expected.

In addition to the completion of the new factory, recently Hamamatsu Photonics also completed the acquisition of NKT Photonics, a Danish manufacturer of high-performance fiber lasers and photonic crystal fibers.

This acquisition stems from Hamamatsu Photonics' strategic acquisition of NKT Photonics for 205 million euros in June 2022. In May 2023, the Danish government temporarily shelved the acquisition on national security grounds. In response to this, Hamamatsu Photonics did not give up, but took further action and finally acquired NKT Photonics in early June this year. After two years, NKT Photonics has now been acquired by Photonics Management Europe S.R.L, a wholly-owned subsidiary of Hamamatsu Photonics K.K.

However, it is puzzling that before completing the acquisition, NKT Photonics was sued in the local federal court on April 17, 2024. Omni Continuum LLC (a company owned by Professor Mohammed N. Islam at the University of Michigan) accuses NKT Photonics of infringing two technology patents related to its "multi-stage supercontinuum" laser in industrial, medical, defense, and quantum applications, and claims at least $18 million. However, the latest developments in this patent infringement case have not yet been announced.

Source: OFweek

Đề xuất liên quan
  • Researchers develop new techniques for controlling individual qubits using lasers

    Researchers at the University of Waterloo's Institute for Quantum Computing (IQC) have developed a new technique that uses lasers to control individual qubits made from the chemical element barium. The breakthrough is a key step toward realizing the capabilities of quantum computers.The new technique uses thin glass waveguides to segment and focus laser beams with unprecedented precision. Each foc...

    2023-09-12
    Xem bản dịch
  • JMP: Small hole mode swing laser welding of nickel based high-temperature alloys - simulation, experiment, and process diagram

    IntroductionThe small hole mode swing laser welding has gained increasing recognition due to its ability to bridge gaps, refine microstructures, and enhance the mechanical properties of welds. However, the effects of amplitude, frequency, welding speed, laser beam power, and beam radius on heat flux distribution, melting mode, and three-dimensional temperature field have not been well understood. ...

    04-11
    Xem bản dịch
  • The research team has solved decades long challenges in the field of microscopy

    When observing biological samples under a microscope, if the medium in which the objective lens is located is different from the sample, the light beam will be interfered with. For example, when observing a water sample with a lens surrounded by air, the light bends more strongly in the air around the lens than in water.This interference can cause the measured sample depth to be smaller than the a...

    2024-04-27
    Xem bản dịch
  • TAU Systems upgrades the University of Texas desktop laser to a peak power of 40 terawatts

    TAU Systems, a manufacturer of ultra fast compact laser plasma accelerators, announced today that it has successfully upgraded the existing desktop terawatt laser (UT 3) at the University of Texas to a new and improved performance that provides power for compact particle accelerators. The upgraded UT 3 driver laser can now generate ultra short pulses with a peak power of 40 terawatts.This upgrade ...

    2023-08-21
    Xem bản dịch
  • New super-resolution microscopy imaging technology: rapid imaging of neurons

    The research group led by Wang Kai from the Center for Excellence in Brain Science and Intelligent Technology of the Chinese Academy of Sciences has published a research paper titled "Super solution imaging of fast morphological dynamics of neurons in eating animals" online in Nature Methods. The team has developed a new type of super-resolution microscopy imaging technology, which solves the two ...

    2024-12-04
    Xem bản dịch