Tiếng Việt

The research team has solved decades long challenges in the field of microscopy

837
2024-04-27 14:34:15
Xem bản dịch

When observing biological samples under a microscope, if the medium in which the objective lens is located is different from the sample, the light beam will be interfered with. For example, when observing a water sample with a lens surrounded by air, the light bends more strongly in the air around the lens than in water.

This interference can cause the measured sample depth to be smaller than the actual depth. Therefore, the sample appears to have flattened.
"This problem has a long history, and since the 1980s, some theories have been proposed to determine a correction coefficient for determining depth. However, all of these theories assume that this coefficient is constant and independent of sample depth. Associate Professor Jacob Hoogenboom of Delft University of Technology explained that although later Nobel laureate Stefan Hell pointed out in the 1990s that this proportion may be related to depth, this situation still occurred.".

Sergey Loginov, a former postdoctoral fellow at Delft University of Technology, has now demonstrated through calculations and mathematical models that samples do exhibit stronger flattening near the lens than away from it. Doctoral student Daan Boltje and postdoctoral researcher Ernest van der Wee subsequently confirmed in the laboratory that the correction factor is related to depth.

This research result is published in the journal Optica.
The last author, Ernest Van der Wee, said, "We have compiled the results into a network tool and software that is provided with the article. With these tools, anyone can determine precise correction factors for their experiments.".

Researcher Daan Boltje said, "Thanks in part to our computational tools, we can now very accurately cut out proteins and their surrounding environment from biological systems, and determine their structure using an electron microscope. This type of microscopic examination is very complex, time-consuming, and incredibly expensive. Therefore, ensuring that the correct structure is observed is crucial."

Researcher Daan Boltje said, "With our more precise depth measurements, we only need to spend less time and money on samples that miss biological targets. Ultimately, we can study more relevant proteins and biological structures. Determining the precise structure of proteins in biological systems is crucial for understanding and ultimately preventing abnormalities and diseases."“

In the provided network tools, you can fill in the relevant details of the experiment, such as refractive index, aperture angle of the objective lens, and wavelength of the light used. Then, the tool will display a depth related scaling factor curve. You can also export this data for your own use. In addition, you can also combine the results with the results of existing theories to draw.

Source: Physicist Organization Network

Đề xuất liên quan
  • The output power of high power femtosecond laser breaking through the key bottleneck of average power can reach the order of 100 watts

    High energy, high average power femtosecond laser due to the attosecond high order harmonic generation, precision processing and manufacturing, biomedical and national defense and other fields of extensive application needs, is the forefront of ultrafast super laser technology research in the past decade.Especially fiber laser due to stable and reliable operation characteristics, compact structure...

    2023-09-04
    Xem bản dịch
  • MKS Instruments announces full year 2024 financial report

    Recently, MKS Instruments released its Q4 and full year financial results for 2024. According to the report, MKS's revenue for the fourth quarter of 2024 reached $935 million, a year-on-year increase of 4.7%, with a GAAP net income of $90 million; In 2024, the annual revenue was nearly 3.6 billion US dollars, a year-on-year decrease of 0.9%. GAAP net revenue was 190 million US dollars, turning los...

    02-20
    Xem bản dịch
  • Laser beam combined with metal foam to produce the brightest X-ray

    According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dens...

    01-18
    Xem bản dịch
  • The construction of Hefei Advanced Light Source Project held a launch ceremony, expected to be completed and released in 5 years

    Recently, in the Future Science City of Hefei City, Anhui Province, the National Major Science and Technology Infrastructure Project and Supporting Projects of Hefei Advanced Light Source announced the start of construction, with a planned land area of approximately 656 acres. The first phase of the project is expected to be completed by September 2028.After completion, it will become an internati...

    2023-09-23
    Xem bản dịch
  • The research results on the implementation of micro active vortex laser using laser nanoprinting technology are published in Nano Letters

    IntroductionVortex beams carrying orbital angular momentum (OAM) are widely used for high-throughput optical information multiplexing, and achieving on chip, small-scale vortex lasers is crucial for promoting the industrial implementation of vortex light reuse technology. Recently, Gu Min, an academician of Shanghai University of Technology, and Fang Xinyuan, an associate professor of Shanghai Uni...

    2023-10-16
    Xem bản dịch