Tiếng Việt

China University of Science and Technology has made progress in the study of the regulatory mechanism of thermally induced delayed fluorescence

354
2024-06-28 10:55:03
Xem bản dịch

Recently, Professor Zhou Meng's research group at the University of Science and Technology of China collaborated with Professor Fu Hongbing's team at the Capital Normal University to reveal the mechanism by which aggregation effects regulate the luminescent properties of thermally delayed fluorescent materials. The research findings, titled "Aggregation Enhanced Thermally Activated Delayed Fluoroscopy through Spin Orbit Coupling Regulation," were published in the German Journal of Applied Chemistry and selected as a hot topic article.

Integrating aggregation induced emission (AIE) effects into thermally delayed fluorescence (TADF) luminescent materials can provide enormous potential for the development of efficient organic light-emitting diodes (OLEDs). Although some progress has been made in the synthesis and fabrication of such materials and devices, there is still a lack of understanding of the corresponding theoretical mechanisms. In this work, the research team aims to regulate TADF by controlling the dynamic process of excited states through aggregation effects.

Research has found that aggregation not only enhances both immediate and delayed fluorescence, but also exerts binding effects on the conformational changes of excited states of molecules. This confinement not only enhances spin orbit coupling (SOC), but also reduces the energy difference (DEST) between singlet and triplet states. This work reveals the understanding of the basic mechanism of aggregation effect regulating TADF, providing guidance for the design of efficient photoluminescence materials.

The research team first analyzed the aggregation effect of the target material DCzBF2 on the regulation of TADF under N2 and O2 atmospheres. Research has found that both in N2 and O2 atmospheres, DCzBF2 exhibits a significant aggregation enhancing luminescence effect. Meanwhile, it was found that the relative ratio of immediate fluorescence and delayed fluorescence of DCzBF2 remained unchanged with the enhancement of aggregation effect in N2 atmosphere.

Using ultrafast spectroscopy research, it was found that the excited state conformational changes of molecules after aggregation were significantly suppressed. However, the ultrafast spectrum did not capture the TADF process in the liquid phase, but it did capture the corresponding process in the membrane phase. Quantitative calculations reveal that this is due to the suppression of the conformational rotation of molecules in the membrane phase, which enhances the SOC between singlet and triplet states involved in inter system crossing (ISC) processes and reduces the corresponding DEST, resulting in a strong triplet signal. Finally, the author studied the influence of different aggregation levels on the excited state relaxation process. The study found that an enhanced aggregation effect would slow down the excited state relaxation process, and there was also an excited state conformational change process at low aggregation levels, while at high aggregation levels, the excited state conformational change was completely suppressed.

This study demonstrates the feasibility of integrating the AIE effect in TADF materials and reveals the corresponding working mechanism. Research has found that with the enhancement of aggregation effect, immediate fluorescence and delayed fluorescence gradually increase, but aggregation effect does not change the ratio between singlet radiation rate and ISC rate. In addition, ultrafast spectroscopy and theoretical calculations in solutions and thin films further reveal that enhancing SOC and reducing DEST are the essential reasons for aggregation enhanced TADF.

Zhang Weite, Associate Researcher at the University of Science and Technology of China, is the first author of the paper; Professor Zhou Meng from the University of Science and Technology of China, Associate Researcher Kong Jie, and Professor Fu Hongbing from the Capital Normal University are the corresponding authors of this paper. This work has been supported by the Chinese Academy of Sciences and the National Natural Science Foundation of China.

Source: University of Science and Technology of China

Đề xuất liên quan
  • Shanghai Optical Machinery Institute has made progress in high-efficiency optical parametric amplification technology

    Recently, a joint research team composed of Sun Meizhi, associate researcher of the High Power Laser Physics Joint Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, and Tu Xiaoniu, associate researcher of the Chinese Academy of Sciences Shanghai Institute of Silicate, proposed a new configuration of cross Fabry Perot intracavity optical parametric ...

    2024-07-11
    Xem bản dịch
  • Emerson launches a new type of laser welding machine that can efficiently and flexibly process medical precision components

    Recently, Emerson, the global leader in industrial automation, launched the all-new Branson ™ The GLX-1 laser welding machine, with its outstanding flexibility and innovative technology, accurately meets the urgent market demand for connecting small, complex or delicate plastic components. Its compact volume and modular design make it easy to integrate into the ISO-8 cleanroom environment, while t...

    2024-06-04
    Xem bản dịch
  • Peking University has made significant progress in the field of photonic chip clocks

    Recently, the research team of Chang Lin from the School of Electronics of Peking University and the research team of Li Wangzhe from the Aerospace Information Research Institute of the Chinese Academy of Sciences published a research article entitled "Microcomb synchronized optoelectronics" online in Nature Electronics, realizing the application of photonic chip clocks in information systems for ...

    02-28
    Xem bản dịch
  • Data from the 2023/2024 fiscal year of Tongkuai Group shows a decline in sales and order volume

    German high-tech company TRUMPF has released data for the 2023/24 fiscal year: sales decreased by 3.6% to 5.2 billion euros, and orders decreased by 10.4% to 4.6 billion euros. The global number of employees has increased by 650, with a total of over 19000 employees, and the number of employees in Germany has increased by nearly 400.As of June 30, 2024, at the end of the 2023/24 fiscal year, the s...

    2024-10-21
    Xem bản dịch
  • New super-resolution microscopy imaging technology: rapid imaging of neurons

    The research group led by Wang Kai from the Center for Excellence in Brain Science and Intelligent Technology of the Chinese Academy of Sciences has published a research paper titled "Super solution imaging of fast morphological dynamics of neurons in eating animals" online in Nature Methods. The team has developed a new type of super-resolution microscopy imaging technology, which solves the two ...

    2024-12-04
    Xem bản dịch