Tiếng Việt

It is said that laser additive manufacturing is good, but what is the advantage?

194
2023-11-08 14:06:49
Xem bản dịch

When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.

In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the Stone Age when cutting wood into spears and splitting stones into axes, to later turning, milling, drilling, chamfering, and then to electrochemical, chemical, and high-temperature processing, although the technology has improved, the idea is still continuous, which is to peel off or decompose a certain part of the processed material in various ways.

The reason why additive manufacturing is called a groundbreaking technology is because it is more like the process of building blocks, using powdered materials as raw materials to construct the objects we need through layer by layer printing. If traditional processing technology is "subtraction", then additive manufacturing can be said to be "addition". One is' from being to being 'and the other is' from being to being', which is a revolutionary change in industrial production thinking.

The flexibility and variability of lasers and the high degree of freedom in additive manufacturing can be said to be a perfect match. In the Selective Laser Melting Deposition (SLM) process, laser can become a high-power and high-quality heat source for additive manufacturing. Materials such as metals, plastics, ceramics, etc. can be melted and stacked layer by layer to form the desired 3D structure. Another type of photocuring molding technology (Stereo lithography Apparatus, SLA) is the use of ultraviolet or laser beams to irradiate and solidify liquid photosensitive resins. From point to line, from line to surface, form the required three-dimensional structure.

Image source: pixabay

Laser additive manufacturing parts have a fine structure and excellent performance, and are commonly used in industries such as aerospace, automobiles, ships, medical and health that require high precision and performance of products. This is because laser additive manufacturing has the following advantages compared to traditional processing modes:

01 Precision and meticulous effect
Due to the fact that additive manufacturing is built by stacking layers, the required geometric shapes can be designed in advance in the software. During processing, the idea of "subtracting" may not be effective for the detailed structure inside the workpiece or cavity (although there is currently laser engraving technology, it is usually only applicable to transparent materials and has limitations). However, for additive manufacturing, even the most delicate structure can start from micro particles and achieve processing effects.

02 is both personalized and versatile
Additive manufacturing technology itself has extremely high flexibility, allowing customized products to be made according to needs to meet special needs. For example, in medical scenarios, dental patients need to customize a denture, and in cases where universal products cannot perfectly fit, relevant products can be customized. For large-scale equipment, Northwestern Polytechnical University also uses laser additive manufacturing technology to produce TC4 alloy wing ribs with a length of over 3 meters for COMAC C919. With the assistance of software, additive manufacturing data can achieve perfect reproduction of the geometric shape, size, and structure of objects under controlled processing conditions.

03 High material utilization rate
Additive processing is truly a "lossless processing". In the traditional sense of processing, the process of "subtracting" means that cutting, turning, and carving will inevitably generate a certain amount of waste. Additive manufacturing technology directly processes materials as needed, theoretically enabling the preparation of as many materials as needed, reducing the generation of waste. Although the current cost of additive processing cannot be ignored, "non-destructive processing" will be the future development trend.

Image source: pixabay

The top three industries with the highest proportion of additive manufacturing usage in 2022 are aerospace, medical, and automotive industries. It can be seen that in terms of cost, the current additive manufacturing still has some limitations and is not suitable for promotion in industries with low profit margins. Rather than being a new processing method, additive processing provides a valuable "way of thinking" for the manufacturing industry. The perfect integration of laser technology and additive processing will not only be limited to current processing processes such as SLM and SLA, but also have the potential to explore more process models on the path of "addition".

Source: OFweek

Đề xuất liên quan
  • Huagong Technology: Exploring the "Laser+" Strategy to Deliver the Powerful Productivity of Laser and Intelligent Manufacturing to Various Parts of the World

    What is the power of a beam of light? If light is used in the manufacturing field, its highest accuracy can reach one percent of the diameter of a hair thread, which is why it is called the "brightest light", "most accurate ruler", and "fastest knife". From airplanes and ships to kitchens and electrical appliances, lasers are widely used as advanced processing tools in all aspects of equipment man...

    2023-10-12
    Xem bản dịch
  • Advanced OPA enhances the energy of attosecond imaging ultra short pulses

    The attosecond level ultra short laser pulse provides a powerful method for detecting and imaging ultra short processes, such as the motion of electrons in atoms and molecules.Although ultra short laser pulses can be generated, generating ultra short and high-energy pulses is a continuous challenge. In order to expand the photon energy, photon flux, and continuous bandwidth of isolated attosecond ...

    2024-05-11
    Xem bản dịch
  • Nokia and AT&T reach five-year agreement to accelerate fiber optic network upgrade

    Recently, Nokia announced a five-year agreement with AT&T. This agreement aims to fully support and accelerate AT&T's fiber network expansion and upgrade plans by deploying Nokia's Lightspan MF platform and Altiplano access controllers. This cooperation not only marks a deep optimization of the existing fiber optic network, but also heralds the early layout and application of the next ge...

    2024-09-12
    Xem bản dịch
  • Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

    Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.With the booming development of wearable technology, the demand for energy storage solutions ...

    2024-04-26
    Xem bản dịch
  • Phil Energy from South Korea wins mysterious order from European battery manufacturer

    Recently, Phil Energy, a South Korean secondary battery equipment manufacturer, successfully won an order from a European battery manufacturer to manufacture the next generation 46 series cylindrical battery manufacturing equipment. At present, both parties have signed a supply agreement for this cooperation, but have not disclosed the customer name and order size to the public. It is understood...

    2024-07-25
    Xem bản dịch