Tiếng Việt

The market accounts for up to 70%! Meere is continuously expanding its market layout

173
2024-06-25 14:35:49
Xem bản dịch

According to Korean media reports, Meere, a semiconductor and display equipment manufacturer from South Korea, is continuously expanding its presence in the high stack semiconductor market, including its HBM business.

In fact, Meere itself is the world's top manufacturer of display edge grinding mechanisms, with a market share of up to 70%. It is based on its accumulation of display microfabrication technology that it has developed wafer processing equipment, thereby consolidating its position in the semiconductor manufacturing industry.

Industry insiders speculate that Meere's layout is expected to gradually erode the semiconductor grinding and precision manufacturing market dominated by Japan's DISCO (semiconductor equipment giant), becoming a new growth pole for its performance.
Meere has been developing wafer processing equipment since 2021 and temporarily received orders from multiple general semiconductor companies such as Samsung Electronics in 2023.

In 2024, the supply range of Meere related equipment has expanded to include wafer manufacturers and semiconductor packaging enterprises. Based on its previous experience in display processing equipment, Meere is expected to gradually achieve great success in the semiconductor process market between 2024 and 2025.

It is understood that Meere was founded in 1984 and has a presence in the fields of surgical robots, sensors, and industrial equipment. As mentioned earlier, Meere's display edge grinding machine business ranks first in the global market share. This device was born in 2000, and Samsung Display, LG Display, BOE, Huaxing Optoelectronics, and others are Meere's main customers.

At the level of precision laser processing technology, Meere has laser cutting machines for wafer and packaging fields, laser cutting machines for display panels, laser marking machines, and laser cutting machines.

One of the biggest challenges facing companies such as Samsung Electronics and SK Hynix is how to improve the yield of HBM, which is currently developing rapidly in the HBM market. Therefore, with the growth of the HBM market, it is expected that the demand for semiconductor wafer processing equipment laid out by Meere will gradually increase.

In 2022, Meere signed a supply contract worth approximately 6.5 billion Korean won with wafer manufacturer SK Siltron, which became one of SK Hynix's suppliers.

At present, Meere's semiconductor product portfolio has expanded from chip manufacturers to wafer manufacturers. Once it obtains subsequent purchase orders for semiconductor packaging equipment, it will become an equipment enterprise covering the entire value chain of the semiconductor manufacturing process.

Therefore, with the support of display processing technology and semiconductor processing technology, Meere has a relative advantage over Japan's DISCO, which only has standardized equipment.

Furthermore, it is worth mentioning that Meere is currently collaborating with clients in various other fields to develop semiconductor laser processing equipment.

Undoubtedly, Meere's investment in the display field has decreased. Instead, based on its advanced display component technology, it has attracted and expanded its semiconductor customer base, deepening technology applications through customer semiconductor process flow, and horizontally enriching its product portfolio.

Therefore, currently, Meere is mainly seeking to expand its technology portfolio in various fields, including semiconductors, in order to maintain and strengthen its own sustainable development capabilities.

Source: OFweek

Đề xuất liên quan
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    Xem bản dịch
  • French silicon optical company Scintil realizes the integration of III-VI DFB lasers and amplifiers with standard silicon optical technology

    Recently, French silicon photonics company Scintil Photonics announced an exciting collaboration, successfully integrating III-V-DFB lasers and amplifiers with standard silicon photonics technology in the production of Israeli semiconductor company Tower Semiconductor. This milestone collaboration marks a crucial step for Scintil in strengthening its supply chain, bringing new possibilities to com...

    2024-03-05
    Xem bản dịch
  • What is field assisted additive manufacturing?

    Dr. Tan Chaolin from the Singapore Institute of Manufacturing Technology, in collaboration with China University of Petroleum, Shanghai Jiao Tong University, Princeton University, University of Malta, Huazhong University of Science and Technology (Professor Zhang Haiou), University of California, Irvine, Hunan University, and EPM Consulting, published an article titled "Review on Field Assisted Me...

    2024-07-29
    Xem bản dịch
  • Laserline completes 70% equity acquisition of WBC Photonics

    Recently, Laserline, a leading semiconductor laser manufacturer in Germany, announced that it has completed the acquisition of a 70% stake in WBC Photonics, a Boston based laser technology expert, marking a significant strategic expansion for Laserline. Through this transaction, Laserline not only expands its product portfolio to include blue laser systems with excellent beam quality (better tha...

    2024-09-20
    Xem bản dịch
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong lasers and matter, short pulse width and high energy electrons are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite ultrafast electromagnetic radiation in a wide range of wavelengt...

    2024-06-21
    Xem bản dịch