Tiếng Việt

The market accounts for up to 70%! Meere is continuously expanding its market layout

789
2024-06-25 14:35:49
Xem bản dịch

According to Korean media reports, Meere, a semiconductor and display equipment manufacturer from South Korea, is continuously expanding its presence in the high stack semiconductor market, including its HBM business.

In fact, Meere itself is the world's top manufacturer of display edge grinding mechanisms, with a market share of up to 70%. It is based on its accumulation of display microfabrication technology that it has developed wafer processing equipment, thereby consolidating its position in the semiconductor manufacturing industry.

Industry insiders speculate that Meere's layout is expected to gradually erode the semiconductor grinding and precision manufacturing market dominated by Japan's DISCO (semiconductor equipment giant), becoming a new growth pole for its performance.
Meere has been developing wafer processing equipment since 2021 and temporarily received orders from multiple general semiconductor companies such as Samsung Electronics in 2023.

In 2024, the supply range of Meere related equipment has expanded to include wafer manufacturers and semiconductor packaging enterprises. Based on its previous experience in display processing equipment, Meere is expected to gradually achieve great success in the semiconductor process market between 2024 and 2025.

It is understood that Meere was founded in 1984 and has a presence in the fields of surgical robots, sensors, and industrial equipment. As mentioned earlier, Meere's display edge grinding machine business ranks first in the global market share. This device was born in 2000, and Samsung Display, LG Display, BOE, Huaxing Optoelectronics, and others are Meere's main customers.

At the level of precision laser processing technology, Meere has laser cutting machines for wafer and packaging fields, laser cutting machines for display panels, laser marking machines, and laser cutting machines.

One of the biggest challenges facing companies such as Samsung Electronics and SK Hynix is how to improve the yield of HBM, which is currently developing rapidly in the HBM market. Therefore, with the growth of the HBM market, it is expected that the demand for semiconductor wafer processing equipment laid out by Meere will gradually increase.

In 2022, Meere signed a supply contract worth approximately 6.5 billion Korean won with wafer manufacturer SK Siltron, which became one of SK Hynix's suppliers.

At present, Meere's semiconductor product portfolio has expanded from chip manufacturers to wafer manufacturers. Once it obtains subsequent purchase orders for semiconductor packaging equipment, it will become an equipment enterprise covering the entire value chain of the semiconductor manufacturing process.

Therefore, with the support of display processing technology and semiconductor processing technology, Meere has a relative advantage over Japan's DISCO, which only has standardized equipment.

Furthermore, it is worth mentioning that Meere is currently collaborating with clients in various other fields to develop semiconductor laser processing equipment.

Undoubtedly, Meere's investment in the display field has decreased. Instead, based on its advanced display component technology, it has attracted and expanded its semiconductor customer base, deepening technology applications through customer semiconductor process flow, and horizontally enriching its product portfolio.

Therefore, currently, Meere is mainly seeking to expand its technology portfolio in various fields, including semiconductors, in order to maintain and strengthen its own sustainable development capabilities.

Source: OFweek

Đề xuất liên quan
  • Munich Shanghai Light Expo and Light Academic Publishing Center further strengthen cooperation

    In November 2024, based on the mutual trust and cooperation over the past years, the Munich Shanghai Optical Expo and the Light Academic Publishing Center of the Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences (hereinafter referred to as the "Light Center") reached a consensus on further strategic development as they ushered in the year of disruptive sci...

    2024-12-05
    Xem bản dịch
  • Researchers use machine learning to optimize high-power laser experiments

    High intensity and high repetition lasers rapidly and continuously emit powerful bursts of light, capable of emitting multiple times per second. Commercial fusion energy factories and advanced compact radiation sources are common examples of systems that rely on such laser systems. However, humans are a major limiting factor as their response time is insufficient to manage such rapid shooting syst...

    2024-05-24
    Xem bản dịch
  • Strategy Networks Utilizes Ekinops for Optical Network Upgrade

    Strata Networks is one of the fastest growing communication cooperatives in Utah, and has chosen Ekinops360 from Ekinops as the platform to upgrade its optical transmission network.Strata is headquartered in Roosevelt, Utah, with a network spanning the Uintah Basin, the Vasatch Front, and Denver. The cooperative continues to expand and improve its fiber optic footprint to differentiate its telepho...

    2023-11-21
    Xem bản dịch
  • The research team has solved decades long challenges in the field of microscopy

    When observing biological samples under a microscope, if the medium in which the objective lens is located is different from the sample, the light beam will be interfered with. For example, when observing a water sample with a lens surrounded by air, the light bends more strongly in the air around the lens than in water.This interference can cause the measured sample depth to be smaller than the a...

    2024-04-27
    Xem bản dịch
  • New photonic nanocavities open up new fields of optical confinement

    In a significant leap in quantum nanophotonics, a team of European and Israeli physicists introduced a new type of polarized cavity and redefined the limits of light confinement. This groundbreaking work was detailed in a study published yesterday in Natural Materials, showcasing an unconventional photon confinement method that overcomes the traditional limitations of nanophotonics.For a long time...

    2024-02-12
    Xem bản dịch