Tiếng Việt

Scientists demonstrate effective fusion "spark plugs" in groundbreaking experiments

232
2024-03-04 14:17:24
Xem bản dịch

Researchers from the Laser Energy Laboratory at the University of Rochester led the experiment and demonstrated an efficient "spark plug" for direct driving of inertial confinement fusion. In two studies published in the journal Nature Physics, the team shared their findings and detailed the potential to expand these methods with the aim of successful nuclear fusion in future facilities.

LLE is the largest university project of the US Department of Energy, equipped with the OMEGA laser system, which is the world's largest academic laser, but its energy is still almost one percent of that of the Lawrence Livermore National Laboratory National Ignition Facility in California. Through Omega, Rochester's scientists successfully attempted several times to emit 28 kilojoules of laser energy into small capsules filled with deuterium and tritium fuel, causing the capsules to implode and generate enough hot plasma to trigger fusion reactions between fuel nuclei. These experiments triggered fusion reactions, generating energy that exceeded the energy in the central thermal plasma.

The OMEGA experiment uses direct laser illumination of capsules, which is different from the indirect driving method used on NIF. When using indirect driving methods, the laser is converted into X-rays, which in turn drive the capsule to implode. NIF uses an indirect driver to irradiate the capsule with X-rays using approximately 2000 kilojoules of laser energy. This led to NIF achieving a breakthrough in fusion ignition in 2022- a fusion reaction that generates net energy gain from the target.

"Generating more fusion energy than the internal energy content of the fusion site is an important threshold," said Dr. Connor Williams' 23, the lead author of the first paper, who is currently a radiation and ICF target design scientist at Sandia National Laboratory. This is a necessary requirement for anything you want to accomplish in the future, such as burning plasma or achieving ignition.

By demonstrating that they can achieve this level of implosion performance with only 28 kilojoules of laser energy, the Rochester team is excited about the prospect of applying direct drive methods to lasers with more energy. Showcasing spark plugs is an important step, however, Omega is too small to compress enough fuel to ignite.

"If you can ultimately manufacture spark plugs and compress fuel, then compared to indirect driving, direct driving has many characteristics that are beneficial for fusion energy," said Dr. Varchas Gopalaswamy'21, a LLE scientist who led the second study that explored the effects of using direct driving methods on megajoule level lasers, similar in size to NIF. After amplifying the OMEGA results to a few megajoules of laser energy, it is expected that the fusion reaction will become self-sustaining, a situation known as' burning plasma '.

Gopalaswamy said that direct driving of ICF is a promising method for achieving thermonuclear ignition and net energy in laser fusion.
"A major factor contributing to the success of these latest experiments is the development of a novel implosion design method based on statistical prediction and validated by machine learning algorithms," said Robert L. McCrory, Professor of Mechanical Engineering and Physics and Astronomy at LE. These predictive models enable us to narrow down the pool of promising candidate designs before conducting valuable experiments.

Source: Laser Net

Đề xuất liên quan
  • Micro laser opens the door to chip size sensors

    The new device is a frequency comb - a special type of laser that can generate multiple wavelengths of light, each with a fixed frequency interval. On the spectrogram, it looks a bit like the teeth of a comb. In approximately a quarter century since their first development, these "cursor rulers" have completely transformed various high-precision measurements from timing to molecular detection. In ...

    2024-03-13
    Xem bản dịch
  • DIT and SK Hynix sign KRW 20.52 billion agreement

    Recently, DIT, a well-known semiconductor and display equipment manufacturer in South Korea, announced that the company has signed an agreement worth 20.52 billion Korean won to supply wafer processing equipment to SK Hynix. According to DIT, the equipment supplied to SK Hynix this time is mainly a laser annealing kit. DIT was founded in 2005 and was listed on KOSDAQ in 2018. Its main focus is o...

    01-20
    Xem bản dịch
  • New photonic nanocavities open up new fields of optical confinement

    In a significant leap in quantum nanophotonics, a team of European and Israeli physicists introduced a new type of polarized cavity and redefined the limits of light confinement. This groundbreaking work was detailed in a study published yesterday in Natural Materials, showcasing an unconventional photon confinement method that overcomes the traditional limitations of nanophotonics.For a long time...

    2024-02-12
    Xem bản dịch
  • Measurement of spectral line intensity of NO2 near 6.2 microns using a quantum cascade laser spectrometer

    Recently, a joint research team from the Key Laboratory of Optoelectronic Information Acquisition and Processing of Anhui University, the Laboratory of Laser Spectroscopy and Sensing of Anhui University, and Ningbo Haier Xin Optoelectronic Technology Co., Ltd. published a paper titled "Measures of line strengths for NO2 near 6.2" μ Research paper on using a quantum cascade laser spectrometer.Re...

    2024-01-02
    Xem bản dịch
  • Nanchang University has made progress in intelligent photoacoustic tomography imaging

    Photoacoustic tomography (PAT) is a novel hybrid medical imaging technique that enables precise imaging of biological tissue structures at different spatial scales. It has been widely used in various fields, including brain imaging, cancer detection, and cardiovascular disease diagnosis. However, due to limitations in data acquisition conditions, photoacoustic tomography systems typically can only...

    2024-08-13
    Xem bản dịch