Tiếng Việt

The research team establishes synthetic dimensional dynamics to manipulate light

358
2024-03-20 15:57:41
Xem bản dịch

In the field of physics, the synthetic dimension has become one of the forefront of active research, providing a way to explore phenomena in high-dimensional space, surpassing our traditional 3D geometric space. This concept has attracted great attention, especially in the field of topological photonics, as it has the potential to unlock rich physics that traditional dimensions cannot reach.

Researchers have proposed various theoretical frameworks to study and implement SDs, aiming to utilize phenomena such as synthetic gauge fields, quantum Hall physics, discrete solitons, and four-dimensional or higher dimensional topological phase transitions. These suggestions may lead to a new fundamental understanding of physics.

One of the main challenges in traditional three-dimensional space is to experimentally achieve complex lattice structures with specific coupling. SD provides a solution that provides a more accessible platform for creating complex resonator networks with anisotropic, long-range, or dissipative coupling. This ability has led to groundbreaking demonstrations of non Hermitian topological entanglement, parity check time symmetry, and other phenomena.

Various parameters or degrees of freedom in the system, such as frequency mode, spatial mode, and orbital angular momentum, can be used to construct SD and are expected to be applied in various fields, from optical communication to topological insulator lasers.

A key goal in this field is to build a "utopian" resonator network where any pair of modes can be coupled in a controlled manner. To achieve this goal, precise mode manipulation is required in the photon system, providing a way to enhance data transmission, energy collection efficiency, and laser array radiation.

Now, as reported in Advanced Photonics, an international research team has created customizable waveguide arrays to establish synthetic modal dimensions. This advancement allows for effective control of light in photonic systems without the need for complex additional features such as nonlinearity or non closure.

Professor Chen Zhigang from Nankai University pointed out that the ability to adjust different light modes within the system takes us one step closer to achieving a 'utopian' network, where all experimental parameters are completely controllable.

In their work, researchers modulated perturbations of propagation that matched the differences between different light modes. To this end, they used artificial neural networks to design waveguide arrays in real space. After training, artificial neural networks can create waveguide settings with the desired mode patterns. These tests help reveal how light propagates and is limited within the array.

Finally, the researchers demonstrated the use of artificial neural networks to design a special type of photonic lattice structure called Su Schrieffer Heeger lattice. This lattice has specific functions and can topologically control the light of the entire system. This allows them to change the volume mode of light propagation and demonstrate the unique characteristics of their synthesized size.

The impact of this work is enormous. By fine-tuning the waveguide distance and frequency, researchers aim to optimize the design and manufacturing of integrated photonic devices.

Professor Hrvoje Buljan from the University of Zagreb said, "In addition to photonics, this work also provides a glimpse into geometrically difficult physics. It brings broad prospects for applications ranging from mode lasers to quantum optics and data transmission.".

Chen and Buljan both pointed out that the interaction between topological photonics driven by artificial neural networks and synthetic dimension photonics has opened up new possibilities for discovery, which may lead to unprecedented material and device applications.

Source: Laser Net

Đề xuất liên quan
  • Four ways researchers harness the power of lasers to achieve manufacturing excellence

    The use of industrial lasers has become a viable option for many manufacturing processes. It enables workers to simplify steps, improve precision and benefit from the benefits associated with output. Decision makers will get the best results when they consider the specific possibilities of using lasers in manufacturing. Here are some options.Improved cleaning and texturing methodsMany man...

    2023-08-04
    Xem bản dịch
  • Developing nanocavities for enhancing nanoscale lasers and LEDs

    As humanity enters a new era of computing, new small tools are needed to enhance the interaction between photons and electrons, and integrate electrical and photon functions at the nanoscale. Researchers have created a novel III-V semiconductor nanocavity that can limit light below the so-called diffraction limit, which is an important step towards achieving this goal.In the journal Optical Materi...

    2024-01-29
    Xem bản dịch
  • New laser technology can achieve more efficient facial recognition

    Recently, the latest research report from FLEET, an interdisciplinary research team in Australia, revealed a significant leap in laser technology, achieving unprecedented levels of spectral purity.Spectral purity, which refers to the degree of matching of a single light frequency (or color) generated by a laser, is an important indicator for measuring laser performance. By using a scanning Fabry P...

    2024-06-24
    Xem bản dịch
  • Laser driven leap forward: the next generation of magnetic devices for controlling light is born

    Recently, a new laser heating technology developed by a Japanese research group has paved the way for advanced optical communication equipment by integrating transparent magnetic materials into optical circuits.This breakthrough was recently published in the journal Optical Materials. It is crucial for integrating magneto-optical materials and optical circuits, which has been a significant long-te...

    2023-12-21
    Xem bản dịch
  • Precision laser manufacturer Preco appoints Jacob Brunsberg as CEO

    Recently, Preco, a leading enterprise in precision laser material processing and laser equipment manufacturing solutions, officially announced a major personnel appointment: Jacob Brunsberg, an outstanding senior manufacturing and technology management expert, has been appointed as its CEO. Mr. Brunsberg is a renowned senior manager in the field of advanced manufacturing and technology, with man...

    2024-09-23
    Xem bản dịch