Tiếng Việt

Rapid and convenient preparation of small-sized metal nanoparticles using microchip lasers

726
2024-01-30 13:53:33
Xem bản dịch

Liquid pulse laser ablation is a reliable and versatile technique for producing metal nanoparticles in solution. Its advantages include no reducing agent, simple operation, high purity, no need for purification steps, and environmental processing conditions, making it the preferred method for traditional metal NP preparation.

The widespread adoption of PLAL in scientific and industrial research has demonstrated its practicality. However, the size and maintenance cost of traditional laser sources pose significant challenges for laboratories, especially those that are not specialized in laser science.

Recognizing these obstacles, Professor Yinghong Sakurai and Professor Yumi Yayama from Osaka University, along with their team, turned their attention to microchip laser systems. MCL, developed by the Taira team at the Institute of Molecular Science, is a compact, low-power giant pulse laser system with a cavity length of less than 10 mm, making it ideal for standard organic synthesis laboratories.

Although MCL has size advantages, the applicability of its specifications to gold target PLAL is still unclear. The research team aims to understand how differences in instrument specifications affect the results of gold PLAL, with the aim of further promoting desktop synthesis and direct application of NPs for catalytic purposes.

In a study published in the Journal of Industrial Chemistry and Materials, the team used MCL to study the PLAL of gold, focusing on the effects of small laser pulse energy, short pulse duration, and low repetition frequency on ablation efficiency. The results indicate that although the pulse energy of MCL is much smaller compared to traditional high-power lasers, it exhibits relatively higher ablation efficiency.

"Our research provides new insights into the preparation of Au NPs using compact MCL systems. Importantly, it opens up avenues for developing new catalytic reactions in standard synthetic chemistry laboratories for highly reactive NPs directly prepared using MCL," said Sakurai.

The research team includes Barana Sandakelum Hettiaracchi, Yusuke Takaoka, Yuta Uetake, Yumi Yakiyama and Mihoko Maruyama, Yusuke Mori, Hiroshi Y. Yoshikawa and Hidehiro Sakurai from Osaka University; And Hwan Hong Lim and Takunori Taira from the Institute of Molecular Science.

Source: Laser Net

Đề xuất liên quan
  • Ruifeng constant green laser: With dense and concentrated characteristics, it can accurately cut on PCBs and FPCs

    In the vigorous development of contemporary technology, green laser has become a shining star in the field of electronics. Not only because of its excellent performance, but also because it brings infinite imagination and creative inspiration to creators. The use of green laser for PCB (Printed Circuit Board) and FPC (Flexible Printed Circuit Board) shape cutting has opened up a new artistic journ...

    2023-09-19
    Xem bản dịch
  • Infinira launches an optical solution for 1.6 Tbps ICE-D data centers

    Infinira, an expert in optical network solutions, announced the launch of a high-speed data center optical transmission module based on single-chip indium phosphide (InP) photonic integrated circuit (PIC) technology. The company claims that the module will connect at a speed of 1.6 terabits per second (Tb/s), while reducing the cost and power consumption per bit.Yingfeilang stated that its data ce...

    2024-03-18
    Xem bản dịch
  • Tsinghua University makes progress in the field of pre sensing optical computing

    In the era of the Internet of Things, visual image sensors, as key devices in the intelligent society, are embedded in various devices such as mobile communication terminals, smart wearable devices, automobiles, and industrial machines. With the continuous expansion of applications, higher requirements have been put forward for the system power consumption, response speed, safety performance, and ...

    2024-08-05
    Xem bản dịch
  • TRUMPF utilizes a laser driven X-ray source to improve electric vehicle batteries

    In the future, electric vehicle battery manufacturers can further improve the durability and performance of electric vehicle batteries through compact X-ray sources. The XProLas development partnership has now begun to develop these laser driven X-ray sources under the leadership of TRUMPF. The first batch of demonstration systems will be completed in 2026. In the future, manufacturers will be abl...

    2024-03-01
    Xem bản dịch
  • IoTech shapes the flexible future of 3D printed electronic products

    The rapidly developing IoTech enterprise headquartered in Israel will showcase at LOPEC 2024 how its disruptive digital manufacturing continuous laser assisted deposition technology shapes the future of microelectronics and additive manufacturing.Herv é Javice, co-founder and CEO of ioTech, commented, "We are delighted to be attending the LOPEC exhibition for the first time and showcasing ...

    2024-02-27
    Xem bản dịch