Tiếng Việt

Researchers have developed a quantum cascade laser in Italy

370
2023-08-04 16:24:48
Xem bản dịch
The first all-Italian quantum cascade laser was born at the National Research Center in Pisa. The protagonists of this milestone are two researchers from the Nanoscience Institute, Lucia Sorba and Miriam Serena Vitiello, who together with their research team designed and developed this innovative device.

In fact, quantum cascade lasers have unique potential for detecting gases and other molecules, and can be used in environmental monitoring, industrial process control, medical diagnostics and other fields.

This is a cutting-edge technology that requires complex designs and custom quantum materials. Vitiello explained: "In nature, there is simply no semiconductor suitable for far-infrared lasers, and man-made materials must be made."

In this case, the device, which is also made using cutting-edge instruments installed at the National Research Center in Pisa, is unique in the country and its core consists of 2,000 nanometer-thick layers of semiconductor material.

A note from Cnr explains that "creating the core of a quantum cascade laser inside the institute, a process that has so far been entrusted to other European laboratories," represents a significant technological advantage for Cnr nanoresearchers. In fact, they will be able to develop quantum cascade lasers at terahertz frequencies in a fully autonomous manner, studying them to improve their performance and exploring important implications in many fields, such as biomedicine, tumor diagnostics, wireless communications, quantum technologies."

Lucia Sorba commented: "Managing the entire process from design to material growth and its engineering to an efficient laser device is an important goal that demonstrates the excellence of the research carried out by Cnr Nano and its ability to meet the technical challenges."

Source: Laser Network
Đề xuất liên quan
  • A new method for generating controllable optical pulse pairs using a single fiber laser

    Researchers from Bayreuth University and Konstanz University are developing new methods to control ultra short laser emission using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse interval of lasers is set by dividing each pulse into two pulses and delaying them at different, mechani...

    2024-01-15
    Xem bản dịch
  • The physicist who built the ultrafast "attosecond" laser won the Nobel Prize

    Pierre Agostini, Ferenc Krausz, and Anne L'Huillier won the award for their ultra short optical pulses, which made close research on electrons possible.Ferenc Klaus, Anne Lullier, and Pierre Agostini (from left to right)Image sources: BBVA Foundation, Kenneth Ruona/Lund University, Ohio State UniversityThis year's Nobel Prize in Physics was awarded to three physicists - Pierre Agostini of Ohio St...

    2023-10-09
    Xem bản dịch
  • Scientists from the SLAC National Accelerator Laboratory in the United States have launched the world's most powerful X-ray laser

    Scientists at the SLAC National Accelerator Laboratory have launched the world's most powerful X-ray laser, which will be used for in-depth atomic and molecular research.It is a significant upgrade to its predecessor, as its brightness has increased by 10000 times.The upgraded laser facility also uses superconducting accelerator components, allowing it to operate at low temperatures near absolute ...

    2023-11-17
    Xem bản dịch
  • TRUMPF utilizes a laser driven X-ray source to improve electric vehicle batteries

    In the future, electric vehicle battery manufacturers can further improve the durability and performance of electric vehicle batteries through compact X-ray sources. The XProLas development partnership has now begun to develop these laser driven X-ray sources under the leadership of TRUMPF. The first batch of demonstration systems will be completed in 2026. In the future, manufacturers will be abl...

    2024-03-01
    Xem bản dịch
  • Japan and Germany jointly develop ultra high speed laser material deposition technology

    Makino Machine Tool Company, headquartered in Tokyo, Japan, and Fraunhofer Institute for Laser Technology (ILT), headquartered in Aachen, Germany, have collaborated to combine ultra-high speed laser material deposition (EHLA) and near net shape additive manufacturing (EHLA3D) with a five axis CNC platform. The new system developed can efficiently produce, coat, or repair complex geometric shapes o...

    2024-10-25
    Xem bản dịch