Tiếng Việt

Emerging laser technologies for precise manufacturing of multifunctional nanomaterials and nanostructures

340
2024-08-05 15:08:57
Xem bản dịch

The use of photons to directly or indirectly drive chemical reactions has fundamentally changed the field of nanomaterial synthesis, leading to the emergence of new sustainable laser chemistry methods for manufacturing micro - and nanostructures. The incident laser radiation triggers complex interactions between chemical and physical processes at the interface between solid surfaces and liquid or gas environments.

In such a multi parameter system, it is impossible to precisely control the resulting nanostructures without a deep understanding of the chemical and physical processes influenced by the environment.

This review aims to provide a detailed and systematic exposition of these processes, examining mature and emerging laser technologies used for producing advanced nanostructures and nanomaterials. Both gases and liquids are considered potential reaction environments that affect the manufacturing process, and subtractive and additive manufacturing methods are also analyzed. Finally, the prospects and emerging applications of such technologies were also discussed.

Through an overview of the history and latest achievements in the field of laser chemistry, researchers have concluded that the development of laser technology, green chemistry methods, and nanophotonics has led to a paradigm shift in modern nanomanufacturing. By changing parameters such as laser beam intensity, environmental composition, and absorption spectra, people can switch between additive manufacturing and subtractive manufacturing or between chemical modification and morphological surface modification under almost the same processing arrangement.

Laser radiation triggers these processes in two different ways:
1) Photochemical action: Photons excite molecular oscillations or electrons in the environment, or generate electron hole pairs on the surface. In this case, the laser wavelength corresponds to certain absorption bands of the material. Therefore, at a time scale greater than that required for chemical reactions, the material will be displaced from thermal equilibrium. Chemical reactions are activated by free charge carriers, or the threshold is lowered due to this excitation.

2) Thermal induction effect: The absorbed laser radiation raises the interface temperature and becomes a local heat source. In this case, thermal equilibrium can be assumed, and chemical reactions are activated by the increased temperature at the interface.

Both of these physical pathways can save a significant amount of energy during the production process. The photochemical method can avoid the Maxwell Boltzmann energy distribution of reactants, in which case only the high-energy "tail" can overcome the reaction barrier, and the rest only dissipate energy. The efficiency of laser-induced thermochemical patterning is higher than that of traditional chemical reactors because light is only localized in the area that needs to be processed. The ultimate goal of this direction is to achieve high control over reaction product parameters, high spatial accuracy, low toxicity, and cost-effectiveness, making laser chemistry methods suitable for industrial scale applications in fields such as flexible electronics, planar optics, sensing, catalysis, supercapacitors, and solar energy.



Source: Yangtze River Delta Laser Alliance

Đề xuất liên quan
  • Lumibird, a well-known French optoelectronics company, increased its lidar production capacity by 16% year-on-year and was boosted by strong market demand

    On July 24, Lumibird, a well-known French optoelectronics company, released its latest semi-annual report. In the first half of the year, Lumibird's revenues were 97.2 million euros, up 16 percent from the same period last year. Of this, the Optoelectronics division contributed 45.9 million euros and the remaining 51.3 million euros came from its medical division. In the second quarter (Q2) ended ...

    2023-08-04
    Xem bản dịch
  • Unlocking visible femtosecond fiber oscillators: progress in laser science

    The emergence of ultrafast laser pulses marks an important milestone in laser science, triggering astonishing progress in a wide range of disciplines such as industrial applications, energy technology, and life sciences. Among various laser platforms that have been developed, fiber optic femtosecond oscillators are highly praised for their compact design, excellent performance, and cost-effectiven...

    2024-03-28
    Xem bản dịch
  • ComNav Technologies introduces Mars Pro Laser RTK

    ComNav Technology Ltd. has introduced the Mars Pro Laser RTK, the latest addition to its Universe series GNSS receiver product line, which includes the Venus Laser RTK and Mars Laser RTK. The GNSS receiver is suitable for the land surveying, GIS and construction industries with its innovative features.Mars Pro's laser mode facilitates the use of conventional GNSS receivers in areas where signals a...

    2023-09-13
    Xem bản dịch
  • Solar cell laser processing deserves attention

    Laser processing is a relatively emerging non-contact processing method that utilizes the high energy of a beam of light to interact with materials and instantly vaporize or change their properties to achieve the expected manufacturing effect. It has gradually been promoted and applied in China in the past 20 years. Due to the different types, pulse widths, and wavelengths of laser generators, the...

    2023-10-31
    Xem bản dịch
  • Deere Laser's self-developed laser induced sintering technology, with LIF equipment orders exceeding 100GW in production capacity

    Recently, Deere Laser received mass production orders and bid confirmations for laser induced sintering (LIF) equipment from multiple top customers, with a cumulative production capacity exceeding 100GW.As an innovative technology iteratively developed by the company based on its own LIR technology and LIA technology, LIF technology has won industry recognition for its excellent efficiency improve...

    2023-09-18
    Xem bản dịch