Tiếng Việt

Enlightra and DESY Hamburg developed an improved and scalable comb laser

901
2024-01-26 13:49:54
Xem bản dịch

Laser technology startup Enlightra collaborates with DESY Hamburg to develop and design more stable and efficient comb lasers. This work demonstrates a microresonator with programmable synthetic reflection, providing tailored injection feedback for driving lasers. This technology has significantly improved compared to traditional self injection locking technology and can be produced using standard lithography.

A comb laser is a multi color light source with an equidistant range of 100 GHz to 1 THz. This technology has high value for the data required for artificial intelligence applications in optical communication.

One of the key aspects of the practicality of comb lasers is their color purity. Although lasers appear to have very pure colors, in most cases, the beam is composed of many very similar colors with different tones. In applications such as optical communication, it is hoped that a laser can emit many very pure different colors. This is where comb lasers come in handy.

Self injection locking has always been a standard method to improve the purity of comb lasers. This method uses a ring resonator to filter out noise. Through Rayleigh backscattering, light is reflected back from random defects within the ring and sent back to the laser for injection locking.

"The problem with relying on random defects is that they can rely on color, and they are not very strong," said John Jost, co-founder of Englightra and one of the authors of the paper. "There are some limitations, and you would like to send more light back to the laser, as this is very helpful for injection locking."

One of the main advances in this study is the design of how light scatters inward and backward in a ring resonator. They achieved this goal by designing the inner surface of the ring, which only strongly scatters a specific color. Jost told Photonics Media that when light moves around the ring, it feels the pattern and can send more light than usual for injection locking. The author conducted various tests using different customized nanostructured ring resonators. They use semiconductor laser tubes to dock and couple to photonic chips with ring resonators. This technology has been demonstrated in the C-band, but it is equally effective in all telecommunications frequency bands. The actual resonator is embedded in the integrated photonic chip, with a silicon nitride photonic crystal ring resonator embedded in the silicon dioxide cladding.

"The photonic integrated circuits used in this work were manufactured in industrial foundries, so the technology is ready to scale up," Jost said. "The ability to design light scattering has opened a whole new door to more advanced designs, allowing us to customize comb shaped laser spectra to our needs in an unprecedented way."

Laser can be combined with various photonic integrated circuits. For example, it can support fast optical I/O units or optical field programmable gate arrays. This technology will benefit data intensive applications such as generative artificial intelligence, as well as new types of decomposed computers and memory architectures.

According to Jost, he and his team have more ideas than they may have tried.
The study was published in Nature Photonics.

Source: Laser Net

Đề xuất liên quan
  • Industrial laser giant Coherent receives $33 million investment

    Recently, according to media reports, industrial laser giant Coherent has signed a "preliminary terms memorandum" with the US Department of Commerce, which will receive up to $33 million in investment under the Chip and Science Act.It is reported that the funds will mainly be used to support the modernization and expansion project of the cutting-edge manufacturing cleanroom in Coherent's existing ...

    2024-12-12
    Xem bản dịch
  • HP100A-50KW-GD laser power detector for measuring extremely high power laser beams

    The HP100A-50KW-GD laser power detector is mainly designed for manufacturers of high-power lasers and laser systems, factories that use high-power lasers to cut thick metal parts, and military applications.The HP100A-50KW-GD adopts a gold reflector cone and a reduced back reflection geometry, which can capture 97% of incident light and process up to 50 kW of continuous laser power. The back reflec...

    2024-01-16
    Xem bản dịch
  • BMW uses WAAM 3D printing to optimize derivative designs

    BMW explained how to use WAAM (Arc Additive Manufacturing) starting from 2025 to manufacture lighter and stronger automotive components and reduce waste generation, in order to optimize the use of generative design tools.The demonstrated WAAM process uses aluminum wire raw materials directly deposited through laser welding heads, enabling automotive companies to manufacture lighter and more robust...

    2024-04-13
    Xem bản dịch
  • Revealing the essence of optical vortices: a step towards understanding the interaction between light and matter

    In a groundbreaking scientific study published in Volume 13 of the Scientific Report, researchers reported on the results of Young's double slit interference experiment using oscillating vortex radiation under a photon counting system. The experiment involves using a spiral oscillator to emit second harmonic radiation in the ultraviolet range. Using an ultra narrow bandpass filter in the low curre...

    2023-12-29
    Xem bản dịch
  • Chip guided beam for new portable 3D printers

    Imagine being able to carry a 3D printer with you and quickly create low-cost objects, such as fastening bicycle wheels or parts needed for critical medical surgeries. Scientists from the Massachusetts Institute of Technology (MIT) and the University of Texas at Austin have combined silicon photonics and photochemical technology to successfully develop the first chip based 3D printer, taking a cru...

    2024-06-18
    Xem bản dịch