Tiếng Việt

Researchers successfully 3D printed polymer based robotic arms through laser scanning

328
2023-11-16 15:29:51
Xem bản dịch

Researchers from the Federal Institute of Technology in Zurich and an American startup used slow curing plastic to develop durable and sturdy robots using high-quality materials.

The team can now print these complex robots at once and combine soft, elastic, and rigid materials together. This allows for the creation of precision structures and parts with cavities as needed.

Inkbit, a derivative company of the Massachusetts Institute of Technology, has developed a new printing technology. Researchers at the Federal Institute of Technology in Zurich have developed several robot applications and helped optimize the technology used for slow curing polymers. The researchers jointly published their research findings in the journal Nature.

Using this new technology, researchers have successfully printed a robotic hand made of bones, ligaments, and tendons made of different polymers in one go for the first time.

So far, we are unable to manufacture this hand using the fast curing polyacrylate we use in 3D printing, "said Thomas Buchner, a doctoral student in the robotics professor Robert Katzschmann group at the Federal Institute of Technology in Zurich, who was the first author of the study. We are currently using slowly curing thiophene polymers. They have excellent elasticity and recover to their original state faster than polyacrylates after bending.

Researchers say their method makes thiophene polymers an ideal choice for producing elastic ligaments in robotic arms. They can also fine tune the stiffness of thiol groups to meet the requirements of soft robots.

Robots made of soft materials, such as the hands we have developed, have advantages over traditional metal robots. Because they are very soft, there is a lower risk of injury when working with humans, and they are more suitable for handling fragile goods, "Katzschmann said.

In order to adapt to slowly curing polymers, researchers further developed 3D printing by adding a 3D laser scanner. The scanner will immediately check each printing layer for any surface irregularities. This technology is not a smooth and uneven layer, but rather considers unevenness when printing the next layer.

The feedback mechanism compensates for these irregularities in the next layer in real-time and accurately by calculating any necessary adjustments to the amount of material to be printed, "said Professor Wojciech Matusik of the Massachusetts Institute of Technology.

Source: Laser Network

Đề xuất liên quan
  • Micro devices output powerful lasers at room temperature, reducing power consumption by 7 times

    Recently, researchers at the Rensselaer Polytechnic Institute in the United States have invented a miniature device thinner than human hair, which can help scientists explore the essence of light and matter and unravel the mysteries of the quantum field. The most important advantage of this technology is that it can work at room temperature without the need for complex infrastructure. The resea...

    2024-05-29
    Xem bản dịch
  • Ultra wideband pulse compression grating for single cycle Ava laser implemented by Shanghai Institute of Optics and Mechanics

    Recently, Shao Jianda, a researcher of Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Jin Yunxia, a researcher team, and Li Chaoyang, a researcher of Zhangjiang Laboratory, have made breakthroughs in the field of ultra wideband pulse compression gratings.The research team has successfully developed a ultra 400 nm broadband gold grating for single cycle pulse com...

    2023-10-01
    Xem bản dịch
  • Laser printing on fallen leaves can produce sensors for medical and laboratory use

    The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The t...

    2024-05-16
    Xem bản dịch
  • LASIT's Laser Revolution: Illuminating the Path to a Greener Future

    In the breakthrough transformation towards sustainable industrial practices, LASIT is at the forefront of the ecological revolution in laser marking technology. This evolution is not just about labeling products; This is about marking a sustainable future.Environmental Innovation: A New Era of Industrial PrecisionLASIT's laser technology is a model of environmental protection. Unlike traditional m...

    2023-11-28
    Xem bản dịch
  • New machine learning algorithm accurately decodes molecular optical 'fingerprints'

    Recently, a research team from Rice University in the United States developed a new machine learning algorithm - Peak Sensitive Elastic Network Logistic Regression (PSE-LR). This algorithm is adept at interpreting the unique optical characteristics of molecules, materials, and disease biomarkers, which can help achieve faster and more accurate medical diagnosis and sample analysis. The relevant pa...

    05-09
    Xem bản dịch