Türkçe

Research on LiDAR at the University of Electronic Science and Technology of China, published in Nature

840
2024-06-22 09:49:06
Çeviriyi gör

The team from the School of Information and Communication Engineering at the University of Electronic Science and Technology of China has proposed for the first time a laser radar instrument based on the dispersion Fourier transform method, forming a new demodulation mechanism. This instrument breaks through the cross limitations of measurement speed, accuracy, and distance, and has unique advantages in the discovery of low, slow, and small targets such as drones. The relevant paper was published in Nature Communications.


Lidar, as a powerful tool, can draw spatial information in real-time with extremely high accuracy and is widely used in industrial manufacturing, remote sensing, airborne and vehicular tasks. In the past two decades, the rapid development of optical frequency combs has improved measurement accuracy to the level of quantum noise limitation. The research at the University of Electronic Science and Technology of China uses the dispersion Fourier transform method to analyze the data information of the phase-locked vernier double soliton laser comb. Through online pulse stretching, it achieves full spectrum interferometric measurement based on traditional time interferometry or pulse reconstruction methods to identify pulse delay. This results in an absolute distance measurement accuracy of 2.8 nanometers and a measurement distance of 1.7 kilometers. In addition, this method has the unique ability to completely eliminate dead zones, which is particularly beneficial for small object detection.

Source: OFweek

İlgili öneriler
  • Scientists have conducted a series of studies on the mechanical properties and flame retardancy of laser formed Ti40 flame-retardant titanium alloy

    Recently, Professor Huang Chunping's team from Nanchang University of Aeronautics and Astronautics conducted a series of studies on the mechanical and flame retardant properties of laser formed Ti40 flame retardant titanium alloy. The research team used typical Ti40 flame-retardant titanium alloy as the research object and prepared Ti40 flame-retardant titanium alloy using LSF technology. The micr...

    2023-08-15
    Çeviriyi gör
  • Silicon Valley giants compete for a new 3D printing space race track

    Recently, Eric Schmidt, former CEO of Google, will take over as CEO of Relativity Space, marking his first CEO position since leaving Google.Relativity Space is known for producing rockets using unusual technologies, including 3D printers, automated robots, and artificial intelligence. In 2023, Relativity Space successfully launched the Terran 1 rocket, proving that its 3D printing technology can ...

    03-24
    Çeviriyi gör
  • The world's highest power industrial grade fiber laser is released in Tianjin

    On August 31st, Tianjin Kaipulin Optoelectronics Technology Co., Ltd. (hereinafter referred to as Kaipulin), a Tianjin Port Free Trade Zone enterprise, officially released the world's first 200000 watt ultra-high power industrial grade fiber laser, breaking the record for the highest power of industrial grade fiber lasers in the world and marking China's stable position in the international advanc...

    2024-09-02
    Çeviriyi gör
  • NASA's laser reflector instrument helps to accurately locate Earth measurements

    The most famous use of GPS satellites is to help people understand their location, whether it is driving cars, ships or planes, or hiking in remote areas. Another important but little-known use is to distribute information to other Earth observation satellites to help them accurately locate measurements of our planet.NASA and several other federal agencies, including the US Space Force, the US Spa...

    2023-12-12
    Çeviriyi gör
  • Accurate measurement of neptunium ionization potential using new laser technology

    Neptunium is the main radioactive component of nuclear waste, with a complex atomic structure that can be explored through mass spectrometry. This analysis is crucial for understanding its inherent characteristics and determining the isotopic composition of neptunium waste. Magdalena Kaja and her team from Johannes Gutenberg University in Mainz, Germany have developed a novel laser spectroscopy te...

    2024-05-11
    Çeviriyi gör