Türkçe

Scientists have conducted a series of studies on the mechanical properties and flame retardancy of laser formed Ti40 flame-retardant titanium alloy

334
2023-08-15 15:25:44
Çeviriyi gör

Recently, Professor Huang Chunping's team from Nanchang University of Aeronautics and Astronautics conducted a series of studies on the mechanical and flame retardant properties of laser formed Ti40 flame retardant titanium alloy. The research team used typical Ti40 flame-retardant titanium alloy as the research object and prepared Ti40 flame-retardant titanium alloy using LSF technology. The microstructure, mechanical properties, and flame retardancy of laser formed specimens and traditional forged specimens were studied. 

At the same time, the superior flame retardancy and mechanical properties of laser formed specimens compared to traditional forged specimens were studied and discussed. The relevant research results are published in the Journal of Manufacturing Processes under the title of "Achieving superior burn resistance and mechanical properties of Ti40 alloy by laser solid forming". The author of the paper is Huang Qimin, a master's student, and the corresponding authors are Dr. Liu Fenggang and Professor Huang Chunping.

Ti40 (Ti-15V-25Cr) flame-retardant titanium alloy is a new type of highly stable β Titanium alloy has excellent comprehensive mechanical properties and flame retardancy, and is widely used in high bypass ratio large engine fan compressor components and other structures. However, its high temperature plasticity and flowability are poor, resulting in high processing costs, long cycles, and low material utilization in traditional mechanical processing. 

Therefore, there is an urgent need to find a new manufacturing technology to improve these issues. With the development of additive manufacturing technology, laser solid forming (LSF) technology based on laser cladding and rapid prototyping has also been widely applied. It can directly manufacture parts from CAD models and repair damaged parts, bringing new ideas and methods for the processing and manufacturing of flame retardant titanium alloys.

Based on the above research, the LSF process has improved the problems of high processing cost, long cycle time, and low material utilization brought about by traditional mechanical processing of Ti40. Ti40 alloy prepared by laser stereoforming technology has better mechanical properties compared to forged parts. At the same time, due to the special tempering effect during the laser stereoforming process, the Ti40 alloy β The precipitation of Ti5Si3 with high melting point can not only improve the oxidation efficiency of V and Cr elements by retaining pores, but also slow down the peeling of the oxide layer by strengthening the bonding between the matrix and the oxide layer, improving the flame retardancy of Ti40. The study of the mechanical properties and flame retardancy of Ti40 alloy prepared by LSF technology provides a new technical means for achieving high-performance, fast, and low-cost preparation of complex structural components of flame retardant titanium alloy.

Source: Laser Manufacturing Network

İlgili öneriler
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Applications in the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in the internationally famous journal Nanoscale Horizons. The first author of t...

    2024-09-27
    Çeviriyi gör
  • Micro ring resonators with enormous potential: hybrid devices significantly improve laser technology

    The team from the Photonic Systems Laboratory at the Federal Institute of Technology in Lausanne has developed a chip level laser source that can improve the performance of semiconductor lasers while generating shorter wavelengths.This groundbreaking work, led by Professor Camille Br è s and postdoctoral researcher Marco Clementi from the Federal Institute of Technology in Lausanne, represe...

    2023-12-11
    Çeviriyi gör
  • From Colored Glass Windows to Lasers: Nanogold Changes Light

    For a long time, craftsmen have been fascinated by the bright red color produced by gold nanoparticles scattered in colored glass masterpieces. The quantum origin of this optical miracle has always been mysterious, until modern advances in nanoengineering and microscopy revealed the complexity of plasma resonance.Now, researchers are preparing to push nano plasma technology, which was once used fo...

    2024-01-02
    Çeviriyi gör
  • Process practice of blue light semiconductor laser cladding copper on copper

    Laser Cladding, also known as laser cladding or laser cladding, is a method of adding cladding material to the surface of the substrate and using a high-energy density laser beam to melt it together with the thin layer on the surface of the substrate. It forms a metallurgical bonded additive cladding layer on the surface of the substrate, which can be used for surface strengthening and defect repa...

    2024-04-09
    Çeviriyi gör
  • BMW uses WAAM 3D printing to optimize derivative designs

    BMW explained how to use WAAM (Arc Additive Manufacturing) starting from 2025 to manufacture lighter and stronger automotive components and reduce waste generation, in order to optimize the use of generative design tools.The demonstrated WAAM process uses aluminum wire raw materials directly deposited through laser welding heads, enabling automotive companies to manufacture lighter and more robust...

    2024-04-13
    Çeviriyi gör