Türkçe

Korean POSTECH develops stretchable color adjustable photonic devices

379
2024-06-11 15:34:09
Çeviriyi gör

Liquid crystal elastomers are expected to be applied in displays, sensors, smart devices, and wearable devices.
A team from POSTECH University in South Korea, led by Professor Su Seok Choi and Professor Seungmin Nam, has developed a new type of stretchable photonic device that can control the wavelength of light in various directions.

This work was carried out by the Department of Electrical Engineering at the university and described in the journal Nature, Light: Science and Applications.


Structural colors are generated through the interaction between light and microscopic nanostructures, and do not rely on traditional color mixing methods to produce bright hues. Traditional displays and image sensors combine three primary colors (red, green, and blue), while structured color technology utilizes the inherent wavelength of light to produce more vivid and diverse color displays.

POSTECH's announcement states that this innovative method is being recognized as a promising technology in the nanooptics and photonics industries.

"Free adjustment of solid colors"
Traditional color mixing techniques using dyes or luminescent materials are limited to passive and fixed color representations. In contrast, adjustable color technology dynamically controls the nanostructure corresponding to a specific wavelength of light, allowing for free adjustment of pure colors.

Previous research was mainly limited to unidirectional color adjustment, typically converting colors from red to blue. Reversing this transition from blue to longer wavelength red has always been a major challenge.

The current technology only allows for adjustments to shorter wavelengths, making it difficult to achieve diverse color representations in the ideal free wavelength direction. Therefore, a new type of optical device capable of bidirectional and omnidirectional wavelength adjustment is needed to maximize the utilization of wavelength control technology.

Professor Cui's team solved these challenges by combining chiral * 1 liquid crystal * 2 elastomers (CLCE) with dielectric elastomer actuators (DEA). CLCE is a flexible material that can change the color of the structure, while DEAs cause flexible deformation of the dielectric in response to electrical stimulation.

The team optimized the actuator structure to combine with CLCE, enabling it to expand and contract, and developed a stretchable device with strong adaptability. The device can freely adjust the wavelength position in the visible spectrum, from shorter to longer wavelengths, and vice versa.

In their experiment, researchers demonstrated that their CLCE based photonic devices can use electrical stimulation to control the structural colors over a wide range of visible light wavelengths (from blue at 450nm to red at 650nm). Compared to previous technologies, this represents significant progress, which were limited to unidirectional wavelength tuning.

This study not only lays the foundation for advanced photonic devices, but also highlights their potential in various industrial applications.
Professor Cui commented, "This technology can be applied to displays, optical sensors, optical camouflage, direct optical simulation encryption, biomimetic sensors and smart wearable devices, as well as many other applications involving broadband electromagnetic waves beyond the light, color, and visible light bands. Our goal is to expand its application scope through continuous research.".

This study was supported by the Samsung Research and Incubation Center of Samsung Electronics and the Technology Innovation Program (Flexible Intelligent Variable Information Display) of the Korea Industrial Technology Planning and Evaluation Institute.

Source: Laser Net

İlgili öneriler
  • Hyperspectral imaging technology: a comprehensive guide from principles to applications

    Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.Introduction to hy...

    2024-04-16
    Çeviriyi gör
  • Shanghai Institute of Optics and Fine Mechanics has made significant breakthroughs in the study of laser damage performance of mid infrared anti reflective coatings

    Recently, the Thin Film Optics Research and Development Center of the High Power Laser Component Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, collaborated with researchers from Hunan University and Shanghai University of Technology to make new progress in the study of laser damage performance of mid infrared anti reflect...

    04-07
    Çeviriyi gör
  • The Japanese team uses laser technology for ice core sampling to accurately study climate change

    Recently, a research team from the Astronomical Glaciology Laboratory under the RIKEN Nishina Center (RNC) of the Japanese Institute of Physics and Chemistry announced that they have developed a new laser based sampling system for studying the composition of glacier ice cores.The above image shows the discrete holes sampled 150mm from the shallow ice core of the Fuji Ice Dome in Japan (Southeast ...

    2023-09-23
    Çeviriyi gör
  • Japan's Murata Machinery Launches a Punch and 4kW Fiber Laser Integrated System

    Recently, Murata Machinery USA, a representative Japanese manufacturer of machinery and CNC machine tools, announced the launch of the latest cutting-edge punch and fiber laser integrated equipment - MF3048HL. This integrated machine combines the advantages of punch operation and laser cutting technology, eliminating the need for separate settings or material transfer between machines.Muratec's pu...

    2023-09-01
    Çeviriyi gör
  • Which automotive parts can use laser soldering technology

    Laser soldering is widely used in the manufacturing of automotive parts. Here are some common automotive parts that can be welded using laser soldering:Automotive electronic control systemEngine Control Unit (ECU): The engine control unit is the "brain" of the car engine, which receives signals from various sensors and controls the operation of the engine based on these signals. Laser soldering ca...

    02-10
    Çeviriyi gör