Türkçe

Europe builds an independent supply chain for Alexander laser crystals for space missions and atmospheric research

465
2023-12-22 14:16:03
Çeviriyi gör

Recently, companies from Lithuania, Italy, and Germany have reached a new milestone in the European independent space mission - based on the Galactic project, they have developed a supply chain for Alexandrite laser crystals in Europe to study changes in the atmosphere and Earth's surface.

The high-power Alexander laser crystals and coatings developed in the GALACTIC project will be used to collect atmospheric and vegetation observation data related to climate change. The goal of the research team is to apply this type of laser crystal to satellite based LiDAR equipment systems for coastline mapping, storm surge modeling, and seabed measurement.

"Drought, heat waves, and floods cause increasing losses every year. It is gratifying that LiDAR instruments equipped with Alexandrite lasers can help us detect atmospheric changes. The near-infrared wavelength of the laser can accurately study atmospheric gases, aerosols, clouds, their motion, and temperature," said Antanas Laurutis, CEO of Altechna, a laser company involved in the project, "Lidar can analyze aerosols, clouds, and atmospheric components in detail, thereby better predicting climate change."

For LiDAR, Alexander laser crystals are actually a valuable material - they can adjust their light wavelength within a certain range for laser applications, approximately between 700 and 860 nanometers.

This adaptability is crucial for technologies such as Raman and Differential Absorption Lidar (DIAL) used for studying the atmosphere. Raman LiDAR recognizes molecules through its unique light pattern, while DIAL systems can recognize gases such as SO2, NOx, and HCl, which can cause acid rain.

The purpose of the GALACTIC mission of the Horizon 2020 project in Europe is to develop replicable Alexandrite crystals coated entirely with European suppliers. Last year, the EU officially announced that space would be a strategic focus of its strategic compass and emphasized the need to develop an EU space strategy with a focus on security and defense.

"For Europe, aerospace is a strategic area, and the supply chain developed during the 'Galactic' project will enable space missions to be conducted independently of other regions," Antanas Laurutis said. "Europe will also avoid export controls, as export controls often make such projects difficult."

Altechna is one of the leading optical engineering companies in the Central and Eastern European Union, contributing to the development of specific coating designs and processes for electron beam and reactive magnetron sputtering equipment.

Researchers studied crystals in Europe and compared them with crystals produced by world-class suppliers, mainly from companies in the United States and China. "Tests have shown that the quality of crystals in the GALACTIC mission is comparable to non European technology solutions," said Laurynas Lukosevicius, chief scientist of Altechna. "This is a big step for Europe to independently use laser technology in space missions."

This new European technology has been validated by the maturity of the aerospace standard TRL 6 technology. "The space standard coating of TRL 6's Alexandrite laser crystal is a key technology for achieving future Earth observation missions. With our partners, we are developing an advanced laser prototype that will enable Europe to obtain more accurate data from atmospheric research," Luko said š Evi č ius said, "For example, using a LiDAR instrument with an Alexandrite laser can help us better identify cloud types and prepare for adverse weather conditions."

Source: OFweek Laser Network

İlgili öneriler
  • Electron beam welding process for thick steel plate of turbine at Aachen Institute of Technology in Germany

    Researchers from the Welding Research Institute of Aachen University of Technology in Germany reported on the development of a stable welding process for electron beam welding of thick plates used in the construction of offshore wind turbines. The relevant research results were published in Materials Science and Engineering Technology under the title "Development of a robust welding process for el...

    2024-07-09
    Çeviriyi gör
  • Shanghai Optical Machinery Institute has made progress in laser assisted connection of metal carbon fiber composite heterojunction materials

    Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in the laser assisted connection of metal carbon fiber composite heterostructure joints.The team used an adjustable flat top rectangular semiconductor laser as a heat source to achieve...

    2023-09-01
    Çeviriyi gör
  • Artificial intelligence accelerates the process design of 3D printing of metal alloys

    In order to successfully 3D print metal parts to meet the strict specifications required by many industries, it is necessary to optimize process parameters, including printing speed, laser power, and layer thickness of deposited materials.However, in order to develop additive manufacturing process diagrams that ensure these optimal results, researchers have to rely on traditional methods, such as ...

    2024-02-27
    Çeviriyi gör
  • Scene Cinemas Unveils Cinematic Changes with IMAX with Laser Upgrade

    Under the visionary leadership of acclaimed producer Hisham Abdel Khalek, Scene Cinemas proudly presents a revolutionary upgrade to its multiplex – IMAX with Laser. This cutting-edge upgrade, featuring a next-generation laser projection and multi-channel sound system exclusively for IMAX theaters, promises an unmatched cinematic journey.IMAX with Laser has a state-of-the-art 4K laser project...

    2023-12-07
    Çeviriyi gör
  • Infinira launches an optical solution for 1.6 Tbps ICE-D data centers

    Infinira, an expert in optical network solutions, announced the launch of a high-speed data center optical transmission module based on single-chip indium phosphide (InP) photonic integrated circuit (PIC) technology. The company claims that the module will connect at a speed of 1.6 terabits per second (Tb/s), while reducing the cost and power consumption per bit.Yingfeilang stated that its data ce...

    2024-03-18
    Çeviriyi gör