Türkçe

Researchers use lasers to measure and manipulate magnetic ripple interactions

831
2024-03-05 14:24:45
Çeviriyi gör

One vision for computing the future is to use ripples in magnetic fields as the fundamental mechanism. In this application, magnetic oscillators can be comparable to electricity and serve as the foundation of electronic products.

In traditional digital technology, this magnetic system is expected to be much faster than today's technology, from laptops and smartphones to telecommunications. In quantum computing, the advantages of magnetism include not only faster speeds, but also more stable devices.
A recent research report published in the journal Nature Physics reported an early discovery on the road to developing magnetic computers. Researchers generated two different types of ripples in the magnetic field of thin alloy plates, measured the results, and indicated that the magnetic oscillators interact in a nonlinear manner. "Nonlinear" refers to outputs that are not proportional to the input, which is a necessity for any type of computing application.

So far, most research in this field has focused on one type of magnetic oscillator, which is described as equilibrium under relatively stable conditions. As done in these studies, manipulating magnetic oscillators can cause the system to lose balance.

This is one of the many studies conducted through years of collaboration between theorists and experimenters from multiple scientific and engineering fields, including the second study recently published in the journal Nature Physics. This project has received support from both government and private funders, bringing together researchers from the University of California, Los Angeles, Massachusetts Institute of Technology, University of Texas at Austin, and University of Tokyo in Japan.

"Together with our colleagues, we have begun a movement that I call stimulating progress in non-equilibrium physics," said Prineha Narang, co-author of the study and professor of physics at the University of California, Los Angeles. The work we are doing here fundamentally advances the understanding of non-equilibrium and nonlinear phenomena. It may be a step towards computer memory, utilizing ultrafast phenomena that occur around one billionth of a second.

A key technology behind these findings is an advanced technique for adding energy to samples and evaluating them using lasers with frequencies in the terahertz range, located between microwave and infrared radiation wavelengths. This method comes from chemical and medical imaging and is rarely used to study magnetic fields.

Nalang, a member of the California Nanosystems Institute at the University of California, Los Angeles, said that the use of terahertz lasers indicates potential synergies with increasingly mature technologies.

"The terahertz technology itself has reached the point where we can talk about a second technology that relies on it," she said. It makes sense to perform this type of nonlinear control in the frequency band where we have lasers and detectors that can be placed on chips. Now is the time to truly move forward, because we have both technical and interesting theoretical frameworks, as well as theoretical frameworks for studying the interactions between magnetic oscillators.

Researchers applied laser pulses to a 2mm thick plate made of carefully selected alloys containing yttrium, a metal used in LED and radar technology. In some experiments, a second terahertz laser was used in a coordinated manner, which paradoxically increased energy but helped stabilize the sample.

The magnetic field is applied to yttrium in a specific way, allowing only two types of magnetic oscillators. Researchers can drive two types of magnetic oscillators individually or simultaneously by rotating the sample to a specific angle relative to the laser. They are able to measure the interaction between two types and find that they can cause nonlinear responses.

"Clearly demonstrating this nonlinear interaction is important for any signal processing based application," said co author and postdoctoral researcher Jonathan Curtis at the University of California, Los Angeles NarangLab. A mixed signal like this allows us to convert between different magnetic inputs and outputs, which is necessary for devices that rely on magnetic manipulation information.

Narang said that trainees are crucial for current research and larger projects.
"This is a very arduous multi-year effort, involving many parts," she said. What is the right system, how do we use it? How do we consider making predictions? How do we limit the system to run the way we want? Without talented students and postdoctoral fellows, we will not be able to do this.

This study includes Keith Nelson, a chemistry professor at the Massachusetts Institute of Technology, Eduardo Baldini, a physics professor at UT Austin, and a team led by Narang from the University of California, Los Angeles, with support from the Quantum Science Center, which is the National Quantum Information Science Research Center of the Department of Energy and is headquartered at the Oak Ridge National Laboratory. 

This study is primarily supported by the Ministry of Energy, as well as the Alexander von Humboldt Foundation, Gordon and Betty Moore Foundation, John Simon Guggenheim Memorial Foundation, and Japan Association for the Advancement of Science, all of which provide ongoing support for collaboration.

Source: Laser Net

İlgili öneriler
  • Peking University has made significant progress in the field of photonic chip clocks

    Recently, the research team of Chang Lin from the School of Electronics of Peking University and the research team of Li Wangzhe from the Aerospace Information Research Institute of the Chinese Academy of Sciences published a research article entitled "Microcomb synchronized optoelectronics" online in Nature Electronics, realizing the application of photonic chip clocks in information systems for ...

    02-28
    Çeviriyi gör
  • Shanghai Institute of Optics and Mechanics proposes a new solution for quartz glass as a visible light laser material

    Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on rare earth ions Dy3+doped quartz glass as a yellow laser material, and the relevant research results were published in the Journal of the American Ceramic Society as "Effect o...

    2024-06-05
    Çeviriyi gör
  • Xunlei Laser 20000W Large Format Laser Cutting Machine Winning the Bid for YD Company, a Famous Enterprise in the Steel Structure Industry

    Recently, the Xunlei Laser HI series 20000W large format laser cutting machine won the bid of YD Company, a well-known steel structure company, to help YD steel structure improve quality, efficiency, and green transformation!Established in 2009, YD Steel Structure is a large-scale specialized steel formwork enterprise that has established deep business partnerships with leading construction indust...

    2023-11-06
    Çeviriyi gör
  • Meltio launches a new blue laser 3D printer M600

    Recently, metal 3D printing manufacturer Meltio launched its latest metal 3D printer - M600. This M600 has shown significant progress in integrating into industrial manufacturing processes, no longer limited to niche applications. Like most of Meltio's product lines, the design of M600 was originally intended to address common manufacturing issues such as long delivery times, high inventory cost...

    2024-07-06
    Çeviriyi gör
  • Export of Pentium Laser Automation Production Line to Japan

    Recently, several large trucks from the Wenzhou factory of Pentium Laser were lined up and ready to go. The high-power and high-speed laser cutting automation production line developed and produced by Pentium Laser has been strictly inspected and accepted by Japanese customers for 15 days and 24 hours of uninterrupted operation. Today, it was loaded and sent to Japan. This laser cutting automati...

    2024-12-06
    Çeviriyi gör