Türkçe

Toronto research has discovered 21 new sources of organic solid-state lasers

888
2024-05-22 14:15:17
Çeviriyi gör

Organic solid-state lasers (OSLs) are expected to achieve widespread applications due to their flexibility, tunability, and efficiency. However, they are difficult to manufacture and require over 150.000 possible experiments to find successful new materials, and discovering them will be a work of several lifetimes. In fact, according to data from the University of Toronto in Canada, only 10-20 new OSL materials have been tested in the past few decades.

Now, researchers from the university's acceleration alliance have accepted this challenge and used Autonomous Driving Laboratory (SDL) technology. Once established, they can synthesize and test over 1000 potential OSL materials and discover at least 21 OSL gain candidate materials within a few months.

SDL uses artificial intelligence and robot synthesis to simplify the process of identifying new materials. In this case, the new materials exhibit excellent laser properties. The Toronto team stated that so far, SDL is typically limited to one physics laboratory in one geographical location.

This work was described in a paper titled "Discovery of delocalized asynchronous closed-loop of organic laser emitters" in the journal Science. In this study, laboratories from Toronto and Vancouver, Canada, Glasgow, Scotland, Illinois, USA, and Fukuoka, Japan were all involved.

Each laboratory can contribute its professional knowledge and resources. This decentralized workflow is managed by a cloud based platform, which not only improves efficiency but also allows for rapid replication of experimental results, ultimately democratizing the discovery process and accelerating the development of next-generation laser technology.

"This paper demonstrates that closed-loop methods can be delocalized, and researchers can accelerate the discovery of materials in the early stages of commercialization from molecular states to devices," said Dr. Al á n Aspuru Guzik, Director of the Acceleration Alliance.
"The team designed an experiment from molecules to devices, with the final equipment manufactured in Japan. They were scaled up in Vancouver and then transferred to Japan for characterization," he said.

The discovery of these new materials represents a significant advancement in the field of molecular optoelectronics. It paves the way for the performance and functional enhancement of OSL devices, and sets a precedent for future delocalized discovery activities in the fields of materials science and autonomous driving laboratories.

Toptica launches FemtoFiber ultra series lasers
Laser developer Toptica has launched the FemtoFiber Ultra series, the company's "next-generation femtosecond fiber laser" designed specifically for multiphoton microscopy, two-photon lithography, and semiconductor detection.

With over 20 years of experience in developing OEM grade fiber lasers, Toptica has created a turnkey, fully integrated, and optimized laser system that provides excellent performance and reliability for the most demanding scientific and industrial applications in the biotechnology and semiconductor industries.

The FemtoFiber ultra series offers unparalleled accuracy and consistency, delivering high average power, excellent temporal and spatial beam quality, and femtosecond pulses in a compact and sturdy package.

This industrial grade optical engine is designed to withstand the harsh conditions of advanced imaging and micro/nano processing, making it an ideal choice for high-end applications. Its seamless operation and low cost of ownership make it a multifunctional solution, enabling researchers and manufacturers to explore new fields of multiphoton microscopy and semiconductor detection.

Luisa Hofmann, Product Manager for Biophotonics and Materials at Toptica, commented, "We designed these lasers to meet the ever-changing needs of our customers, providing them with powerful tools to deliver consistent results while minimizing downtime and costs, with output wavelengths of 780, 920, and 1050 nm.".

Source: Laser Net

İlgili öneriler
  • Lumiotive Launches New LiDAR Sensor LM10

    Recently, optical semiconductor developer Lumiotive, headquartered in Seattle, USA, launched a new LiDAR sensor LM10, which is its first fully produced product of light controlled metasurface (LCM) technology designed for digital beam steering.The developers stated that compared to mechanical systems, their digital beam steering method overcomes the limitations of traditional LiDAR sensors in term...

    2023-09-02
    Çeviriyi gör
  • BWT's 3000W product speed surges by 200%

    In the era of speed and precision, the field of thin and medium plate processing is experiencing a revolutionary transformation. Today, let's explore a remarkably fast tool -- BWT’s Lightning 3000W@34μm fiber laser, and witness its impressive performance.On busy production lines, this product is completing complex cutting tasks at astonishing speeds. Its high-speed, high-efficiency, and high-quali...

    05-12
    Çeviriyi gör
  • What are double- and triple-stack hybrid stepper motors

    Of the three primary stepper motor designs — permanent magnet, variable reluctance, and hybrid — hybrid stepper motors are arguably the most popular in industrial applications, combining the best performance characteristics of permanent magnet and variable reluctance types.Hybrid stepper motors are constructed with a rotor made of two sections, or cups, with a permanent magnet between ...

    2023-09-16
    Çeviriyi gör
  • SPIE Optics and Photonics 2025: Plenary Session Evaluation of Organic Materials for Optoelectronics

    The use of organic materials in photonics has given rise to many device innovations for applications in sensing, semiconductors, lasers, and more. The Organic Photonics + Electronics plenary session at SPIE Optics + Photonics 2025, taking place through 7 August in San Diego, California, sampled some current research efforts in this subfield, and looked at developments on the horizon.Ruth Shinar d...

    08-06
    Çeviriyi gör
  • Van's updates the manufacturer of laser-cut parts

    Van's Aircraft has responded to reports of ruptured dented parts found in AirVenture's latest kit. These defects are caused by external suppliers changing the process of laser cutting parts. From February 2022 to June 2023, Van's moved some parts from traditional punch manufacturing to an outside supplier that can laser cut rivet holes. The move is designed to increase the company's throughput and...

    2023-08-04
    Çeviriyi gör