Türkçe

The Role of Active Tunable Laser in GeSn Nanomechanical Oscillator in Nat Nanotechnology

489
2024-05-14 14:31:16
Çeviriyi gör

It is reported that researchers from Nanyang Technological University in Singapore, Federal Institute of Technology Lausanne in Switzerland, Physics Laboratory of Higher Normal University in Paris, National Center for Scientific Research in France, Sorbonne University, City University of Paris, University of Leeds in the UK, and Korean Academy of Science and Technology (KAIST) have reported on the active tunable laser effect in GeSn nanomechanical oscillators. The study was published in Nature Nanotechnology under the title "Actively tunable laser action in GeSn nanomechanical catalysts".

The mechanical force caused by high-speed oscillation provides a good method for dynamically changing the basic characteristics of materials such as refractive index, absorption coefficient, and gain dynamics. Although precise control of mechanical oscillations has been well developed in the past few decades, the concept of dynamic mechanical forces has not yet been used to develop tunable lasers. In the article, researchers demonstrated the active tunable mid infrared laser effect of a compact class IV nanomechanical oscillator. The GeSn cantilever nanobeam suspended on a silicon substrate is driven by radio frequency wave resonance. Electrically controlled mechanical oscillation can induce periodic elastic strain in GeSn nanobeams over time, thereby achieving greater than 2 μ Active tunable laser emission with m wavelength. This study proposes a wide range mid infrared tunable laser with ultra-low tuning power consumption by utilizing mechanical resonance in radio frequency as the driving mechanism.

Figure 1: Design of a GeSn nanomechanical oscillator with actively tunable laser action.

Figure 2: Experimental setup.

Figure 3: Mechanical characterization and simulation.

Figure 4: Characterization of GeSn material.

Figure 5: Laser emission characteristics of the driving oscillator.

Figure 6: Production process.

Source: Yangtze River Delta Laser Alliance

İlgili öneriler
  • IPG launches dual beam fiber laser for additive manufacturing applications

    Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.Ba...

    2024-11-25
    Çeviriyi gör
  • Exail acquires optical company Leukos

    Recently, exail (formerly iXblue) announced the acquisition of Leukos, an optical company specializing in providing advanced laser sources for metrology, spectroscopy, and imaging applications.Leukos was founded by the French XLIM Institute (a joint research department of the French National Academy of Sciences and the University of Limoges), with over 20 years of professional experience in the re...

    01-13
    Çeviriyi gör
  • Lumentum Holdings changes CEO

    On February 3, 2025, Lumentum Holdings has appointed Michael Hurlston as its President, CEO, and Director, effective from February 7. Hurlston replaces Alan Lowe, who has been serving as the company's President and CEO since 2015. Lowe will continue to serve as a member of Lumentum's board of directors and as a consultant to the company.Lumentum is a major supplier of high-speed optical transceive...

    02-06
    Çeviriyi gör
  • Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

    Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.With the booming development of wearable technology, the demand for energy storage solutions ...

    2024-04-26
    Çeviriyi gör
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    Çeviriyi gör