Türkçe

Scientists have made breakthrough progress in using laser to cool sound waves

192
2024-01-22 15:17:11
Çeviriyi gör

A group of researchers from the Max Planck Institute of Optoelectronics has made a significant breakthrough in using laser cooling to travel sound waves. This development brings us one step closer to the quantum ground state of sound in waveguides, which is of great significance for quantum communication systems and future quantum technology.

By using laser cooling, scientists can significantly reduce the temperature of sound waves in optical fibers. They achieved a significant reduction of 219K, ten times higher than previously reported. In the end, they managed to reduce the initial number of phonons by 75% at a temperature of 74 K.

The key to this success lies in utilizing stimulated Brillouin scattering, a nonlinear optical effect that can effectively couple light waves to sound waves. Laser is used to cool acoustic vibrations, creating an environment with minimal thermal noise. This decrease in temperature has a significant impact on quantum systems, as thermal noise can hinder the functionality of quantum communication systems.

A significant advantage of using glass fibers is that they can conduct light and sound over long distances while maintaining strong interactions. During the experiment, researchers used a 50 centimeter long optical fiber to cool the sound wave that extended its entire length. Considering that most of the platforms previously brought to the quantum ground state were microscopic in size, this is remarkable.

The realization of cooling sound waves to such low temperatures has opened up new experimental fields, allowing for a deeper understanding of the fundamental properties of matter. In addition, due to the broadband and continuous existence of sound waves in waveguide systems, these advancements are of great significance for high-speed communication systems.

"We are very enthusiastic about the new insights that pushing these fibers into quantum ground states will bring," said Dr. Birgit Stiller, head of the Quantum Photoacoustics group. Not only from the perspective of basic research, it enables us to glimpse the quantum properties of extended objects, but also because it may have applications in quantum communication schemes and future quantum technologies.

In summary, the breakthrough made by researchers at the Max Planck Institute in utilizing laser cooling of sound waves has brought us closer to achieving the quantum ground state of sound. This development is of great significance to quantum communication systems and opens up new possibilities for future quantum technology.

Source: Laser Net

İlgili öneriler
  • NSF funding for the world leading EP-OPAL laser multi mechanism design in Rochester

    The National Science Foundation (NSF) of the United States has awarded the University of Rochester nearly $18 million for three years to design and prototype key technologies for EP-OPAL, a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter.After the design project is completed, the facility can be built at the Laser Energy Laboratory (LLE). This fund...

    2023-09-26
    Çeviriyi gör
  • Ultra wideband pulse compression grating for single cycle Ava laser implemented by Shanghai Institute of Optics and Mechanics

    Recently, Shao Jianda, a researcher of Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Jin Yunxia, a researcher team, and Li Chaoyang, a researcher of Zhangjiang Laboratory, have made breakthroughs in the field of ultra wideband pulse compression gratings.The research team has successfully developed a ultra 400 nm broadband gold grating for single cycle pulse com...

    2023-10-01
    Çeviriyi gör
  • Narrow band tunable terahertz lasers may change material research and technology

    A group of researchers from the Max Planck Institute for Material Structure and Dynamics in Germany explored the effect of manipulating the properties of quantum materials far from equilibrium through customized laser drivers. They found a more effective method to create previously observed metastable superconducting states in fullerene based materials using lasers.By tuning the light source to 10...

    2023-11-21
    Çeviriyi gör
  • Scientists at St. Andrews University have made significant breakthroughs in compact laser research

    Scientists at St. Andrews University have made significant breakthroughs in compact laser research after decades of hard work.Laser is widely used in fields such as communication, medicine, measurement, manufacturing, and measurement around the world. They are used to transmit information on the internet, for medical purposes, and even in facial scanners on mobile phones. Most of these lasers are...

    2023-10-04
    Çeviriyi gör
  • Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering

    On May 7, 2024, the official website of the Canadian Academy of Engineering announced that Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering.Dr. Gu BoAcademician of the Canadian Academy of EngineeringFounder/President of Bose Photonics, USADr. Gu Bo is recognized as a pioneer and academic leader in the global field of fiber lase...

    2024-05-07
    Çeviriyi gör