Türkçe

BMW uses WAAM 3D printing to optimize derivative designs

917
2024-04-13 13:45:50
Çeviriyi gör

BMW explained how to use WAAM (Arc Additive Manufacturing) starting from 2025 to manufacture lighter and stronger automotive components and reduce waste generation, in order to optimize the use of generative design tools.

The demonstrated WAAM process uses aluminum wire raw materials directly deposited through laser welding heads, enabling automotive companies to manufacture lighter and more robust parts than similar large parts.

BMW stated that in order to optimize the parts manufactured using this technology, the combination of manufacturing processes and general new component design is crucial. To this end, BMW is accelerating the use of generative design and working closely with interdisciplinary teams to develop its own algorithms, partially inspired by the natural evolution process.

Karol Virsik, Head of Vehicle Research at BMW Group, said, "What is impressive is how WAAM technology has evolved from research to a flexible tool that can be used not only for testing components, but also for mass production of components." "The use of generative design methods allows us to fully utilize design freedom, thus fully utilizing the potential of technology. Just a few years ago, this was unimaginable."

Although these components have wide welds, BMW engineers have proven that WAAM components can still be used for high loads without the need for precision machining of surfaces.

Since 2021, BMW has been testing this DED process at its additive manufacturing park in Oberschlei ß heim, Germany, where the first batch of components will be produced. BMW expects to increase production in other locations by using existing assembly lines with new software.

BMW stated that the adoption of WAAM technology will not replace SLS technology for more refined parts, but arc additive manufacturing technology is "superior" in terms of possible size and deposition rate of parts.

The company is even considering using WAAM technology to directly produce individual components on assembly lines, as this technology does not require new tools and only requires software changes to manufacture different components.

Source: NetEase Network

İlgili öneriler
  • Surface coupled laser technology manufacturer, secured £ 2.94 million in financing

    Recently, renowned surface coupled laser technology supplier Vector Photonics announced that it has received £ 1.667 million in equity investment and £ 1.27 million in additional research funding for the continued commercialization of its unique surface coupled laser (SCL) technology. Surface coupled lasers have completely changed semiconductor laser manufacturing, improving the performance of var...

    2024-06-14
    Çeviriyi gör
  • New research on achieving femtosecond laser machining of multi joint micromachines

    The team of Wu Dong, professor of the Micro/Nano Engineering Laboratory of University of Science and Technology of China, proposed a processing strategy of femtosecond laser two in one writing into multiple materials, manufactured a micromechanical joint composed of temperature sensitive hydrogel and metal nanoparticles, and then developed a multi joint humanoid micromachine with multiple deformat...

    2023-09-15
    Çeviriyi gör
  • IPG launches dual beam fiber laser for additive manufacturing applications

    Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.Ba...

    2024-11-25
    Çeviriyi gör
  • Fraunhofer ILT has developed a process for forming hard material components using USP laser technology

    Tools made of hard materials are very wear-resistant, but the tools used to produce these tools are prone to wear and tear. Laser tools are the solution. Researchers at the Fraunhofer Institute for Laser Technology (ILT) have developed a process chain that can use ultra short pulse (USP) lasers to shape and polish hard material components without the need to replace clamping devices.Drills, millin...

    10-17
    Çeviriyi gör
  • Accurate measurement of neptunium ionization potential using new laser technology

    Neptunium is the main radioactive component of nuclear waste, with a complex atomic structure that can be explored through mass spectrometry. This analysis is crucial for understanding its inherent characteristics and determining the isotopic composition of neptunium waste. Magdalena Kaja and her team from Johannes Gutenberg University in Mainz, Germany have developed a novel laser spectroscopy te...

    2024-05-11
    Çeviriyi gör