Türkçe

BMW uses WAAM 3D printing to optimize derivative designs

738
2024-04-13 13:45:50
Çeviriyi gör

BMW explained how to use WAAM (Arc Additive Manufacturing) starting from 2025 to manufacture lighter and stronger automotive components and reduce waste generation, in order to optimize the use of generative design tools.

The demonstrated WAAM process uses aluminum wire raw materials directly deposited through laser welding heads, enabling automotive companies to manufacture lighter and more robust parts than similar large parts.

BMW stated that in order to optimize the parts manufactured using this technology, the combination of manufacturing processes and general new component design is crucial. To this end, BMW is accelerating the use of generative design and working closely with interdisciplinary teams to develop its own algorithms, partially inspired by the natural evolution process.

Karol Virsik, Head of Vehicle Research at BMW Group, said, "What is impressive is how WAAM technology has evolved from research to a flexible tool that can be used not only for testing components, but also for mass production of components." "The use of generative design methods allows us to fully utilize design freedom, thus fully utilizing the potential of technology. Just a few years ago, this was unimaginable."

Although these components have wide welds, BMW engineers have proven that WAAM components can still be used for high loads without the need for precision machining of surfaces.

Since 2021, BMW has been testing this DED process at its additive manufacturing park in Oberschlei ß heim, Germany, where the first batch of components will be produced. BMW expects to increase production in other locations by using existing assembly lines with new software.

BMW stated that the adoption of WAAM technology will not replace SLS technology for more refined parts, but arc additive manufacturing technology is "superior" in terms of possible size and deposition rate of parts.

The company is even considering using WAAM technology to directly produce individual components on assembly lines, as this technology does not require new tools and only requires software changes to manufacture different components.

Source: NetEase Network

İlgili öneriler
  • Application and Effect of Laser Cleaning

    Mold cleaning: Mold plays a very important role in industrial production. Currently, there are over a thousand mold related enterprises in China, driving the related output value to nearly 10 billion yuan. Among them, mold cleaning is an essential step in mold production. Laser can achieve contactless cleaning of molds, which is very safe for the surface of the mold, ensuring its accuracy, and can...

    2023-10-14
    Çeviriyi gör
  • EOS and AMCM will open a new UK Additive Manufacturing Excellence Center

    The University of Wolverhampton (UK), along with global 3D printing leaders EOS and AMCM, will collaborate to establish a new Centre of Excellence (AM) for Additive Manufacturing in the UK. This partnership will provide cutting-edge technology from EOS and AMCM, and focus on developing advanced materials and processes for high demand applications in industries such as aerospace, automotive, aerosp...

    2024-04-15
    Çeviriyi gör
  • Multi functional materials for solar cells and organic light-emitting diodes to achieve high performance and stability

    Through joint research, a team developed a 4-amino-TEMPO derivative with photocatalytic performance and successfully used it to produce high-performance and stable fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs). This paper was published in the journal Materials and Energy Today.The developed 4-amino-TEMPO derivatives have the characteristic of ...

    2024-06-03
    Çeviriyi gör
  • Yongxin Optics: Launch of the "Multimodal Nanoresolution Microscope" Project

    Recently, the launch and implementation plan demonstration meeting of the "Multimodal Nano Resolution Microscope" project led by Ningbo Yongxin Optics Co., Ltd. was successfully held in Ningbo. This is the fourth time Yongxin Optics has led a national key research and development plan project and received support, indicating that the company's ability to undertake national level technological rese...

    04-10
    Çeviriyi gör
  • The Boston University research team developed a high-throughput single-cell sorting technique based on stimulated Raman spectroscopy

    A Boston University research project has successfully developed an innovative single-cell sorting technique that uses stimulated Raman spectroscopy to replace traditional fluorescent labeling and achieve labeling free and non-destructive single-cell measurements. This technology is expected to have a profound impact in the fields of cytology, microbiology and biomedical research, allowing scienti...

    2023-09-07
    Çeviriyi gör