Türkçe

Progress in research on intrinsic flexible and stretchable optoelectronic devices in the Institute of Chemistry

497
2024-04-09 15:58:58
Çeviriyi gör

Organic polymer semiconductor materials, due to their unique molecular structure and weak van der Waals interactions, are endowed with the characteristics of soluble processing and easy flexibility, and have potential applications in portable and implantable medical monitoring devices. A highly flexible, skin conformal, and excellent spatial resolution X-ray detector is expected to be integrated with curved objects and moving entity systems to achieve intrinsic flexibility and high sensitivity in skin like X-ray detectors.

However, the stability and image resolution of X-ray detectors based on organic polymer semiconductor materials under irradiation are poor, which limits the application of such devices. Liu Yunqi, an academician of the CAS Member, and Guo Yunlong, a researcher in the Key Laboratory of the Institute of Mechanical and Solid State of the Chemical Research Institute, have made a series of progress in high-performance intrinsically stretchable organic optoelectronic materials and devices.

Recently, in response to the reported issues of high operating voltage, poor stability, and low integration of stretchable organic optoelectronic devices, the team has proposed a new strategy of using removable interfaces to assist in the preparation of high-density intrinsic stretchable organic transistor arrays. This strategy introduces a lithium fluoride sacrificial layer on patterned photoresist to construct a detachable interface, achieving scalable integration of high-resolution intrinsic stretchable electrodes. The short channel stretchable organic transistor prepared in this study has low operating voltage, high optoelectronic performance, and excellent stability. The stretchable image sensor based on this short channel transistor exhibits a resolution of up to 10 lp mm-1 and achieves images of millions of pixels. This strategy provides a simple and universal optoelectronic integration platform. The relevant results were published in Nature Communications.

In addition, the team published a review paper on "Emerging Materials and Transistors for Integrated Circuits" in the National Science Review, summarizing the molecular design of high mobility semiconductor materials and functional fusion of mechanical, optical, and thermal properties. They analyzed and looked forward to the research progress and direction of functionalized high mobility polymer semiconductors.
The research work was supported by the National Natural Science Foundation of China, the Ministry of Science and Technology and the Chinese Academy of Sciences.

A detachable interface strategy for achieving stable, low-voltage stretchable organic transistors and high-resolution X-ray imaging


Multi functional integrated high mobility organic polymer semiconductor molecular materials

Source: Institute of Chemistry

İlgili öneriler
  • German team develops and promotes laser technology for formable hybrid components

    Scientists from the Hanover Laser Center (LZH) in Germany are studying two laser based processes for producing load adapted hybrid solid components.From a transaction perspective, mixing semi-finished products can help save materials and production costs, but if the components that need to be replaced are made of expensive materials, these materials need to meet high requirements in future use, su...

    2023-08-16
    Çeviriyi gör
  • Tokyo Institute of Technology collaborates with EX Fusion to promote laser fusion energy closer to commercialization

    Recently, Tokyo Institute of Technology and EX Fusion established a collaborative research group focused on promoting liquid metal equipment to achieve commercial laser fusion reactors. The two sides held an official signing ceremony in Tokyo on October 11th, marking the official start of their cooperation.The EX Fusion Liquid Metals Collaborative Research Group was established with the support of...

    2023-10-17
    Çeviriyi gör
  • Novanta launches multi axis laser scanning head for microprocessing applications

    Novanta Corporation ("Novanta") announced the launch of the new generation of multi axis scanning head, the Precession Elephant III.This next-generation multi axis scanning head for microfabrication provides a simple upgrade path for existing and new customers to meet the growing market demand with faster and more accurate performance.The Precision Elephant III (PE III) utilizes proprietary optica...

    2024-07-18
    Çeviriyi gör
  • What is field assisted additive manufacturing?

    Dr. Tan Chaolin from the Singapore Institute of Manufacturing Technology, in collaboration with China University of Petroleum, Shanghai Jiao Tong University, Princeton University, University of Malta, Huazhong University of Science and Technology (Professor Zhang Haiou), University of California, Irvine, Hunan University, and EPM Consulting, published an article titled "Review on Field Assisted Me...

    2024-07-29
    Çeviriyi gör
  • Laser photonics helps simplify maintenance processes in the mining industry

    Laser Photonics Corporation (LPC) is a leading global developer of industrial laser systems for cleaning and other material processing applications, emphasizing the critical applications of its industrial laser cleaning systems in the mining industry.Laser Photonics provides a user-friendly, ethical, cost-effective, and time-saving solution for professionals in the mining industry to maintain heav...

    2024-06-14
    Çeviriyi gör