Türkçe

The world's first scalable optical quantum computer prototype has been launched

727
2025-02-12 14:21:10
Çeviriyi gör

Canada's Xanadu Quantum Technologies has developed the world's first scalable optical quantum computer prototype. The company published an article in the latest issue of Nature detailing its design and construction process, and demonstrating how the prototype can be flexibly scaled up to the required scale. This breakthrough lays an important foundation for the development of large-scale quantum computing in the future.

The researchers adopted a modular design concept to construct this quantum computer. In the initial stage, they built a basic unit containing a small number of qubits, suitable for the most basic application scenarios. As demand grows, computing power can be expanded by adding more units of the same type. These units work together through a network to form a large computer. Each newly added unit or quantum server rack will increase the overall processing capacity.


System and main module schematic diagram. (Image source: Nature magazine, UK)


Researchers point out that thousands of such units can be connected through fiber optic cables to create large quantum computers with enormous processing power. Due to the fact that the entire system is based on photon technology, there is no need to combine photon components with traditional electronic components.

To validate this concept, researchers constructed a prototype system consisting of four server racks. The system uses 84 compressors to form a computer with 12 physical qubits. Among them, the first rack is equipped with an input laser, while the other three racks contain five main subsystems: quantum bit generation source, quantum bit storage buffer, optimization system for improving quality and generating entangled states, routing system for assisting entanglement and clustering, and quantum processing unit for executing the final computing task. It should be noted that since the system is entirely based on photon technology, it can operate at room temperature without the need for cooling equipment.

Researchers tested the performance of the system by creating a unique entangled state. The experimental results are satisfactory, indicating that the system can not only perform complex large-scale computing tasks, but also has a high degree of fault tolerance. This achievement not only demonstrates the enormous potential of quantum computing, but also provides new directions and possibilities for future technological development.

Xanadu stated that quantum computers have always faced two major issues: improving performance (error correction and fault tolerance) and scalability (networking), and now they have solved the latter.

The Aurora photon computer adopts a modular design, equipped with 35 photon chips and connected to a fiber optic length of 13 kilometers. They are divided into four similar units, distributed on four rack servers, and can achieve optical interconnection and networking.
Through fiber optic interconnection, up to 84 compressors and 36 photon number resolution detectors can provide 12 physical photon quantum bit patterns per clock cycle.

They plan to establish the first quantum data center in 2029, which will include thousands of servers and one million qubits.
In addition, American companies such as PsiQuantum and French company Quandela are also researching optical quantum computers.

According to Science Popularization China, on October 11, 2023, the internationally renowned physics academic journal "Physical Review Letters" published the latest research results of a Chinese research team in the field of photon computing.

The quantum computing research team composed of Pan Jianwei, Lu Chaoyang, Liu Naile and others from the Institute of Quantum Information and Quantum Technology Innovation of the Chinese Academy of Sciences, University of Science and Technology of China, cooperated with the Shanghai Institute of Microsystems, Chinese Academy of Sciences, and the National Center for Parallel Computer Engineering and Technology, and successfully built a 255 photon quantum computing prototype "Jiuzhang No.3", which again broke the world record for the number of controllable photons in quantum computers.

The "Jiuzhang No. 3" is the latest model developed and matured based on the previous "Jiuzhang" series of optical quantum computing prototypes, representing the highest level of technology in the field of optical quantum computing.

The research results indicate that compared to the previous quantum computing prototype "Jiuzhang-2" with only 113 photon manipulation capabilities, the "Jiuzhang-3" with 255 photons has increased its computational speed by approximately one million times in dealing with the specific complex problem of "Gaussian Bose sampling".

Therefore, "Chapter Nine No. 3" not only improved the ability of quantum computers to solve complex problems, but also created the latest world record for the superiority of quantum computing, providing solid technical support for the ultimate development of truly practical general-purpose quantum computers.

Photons, also known as photons, can transmit electromagnetic interactions at the speed of light. They were first proposed by Albert Einstein in 1905 and officially named by American scientist Gilbert Lewis in 1926.

In today's life, electronic devices such as computers and calculators that we come into contact with still belong to the category of classical computers. As the computing power of classical computers continues to approach the limit of Moore's Law, simply increasing the number of processors in classical computers is becoming increasingly difficult to meet the huge data computing needs of the future.

Unlike classical computers, quantum computers adopt the parallel computing characteristics of quantum mechanics theory to have more efficient computational performance.

Source: laserfair

İlgili öneriler
  • Trumpf laser uses artificial intelligence technology to improve welding quality

    At last month’s LASER World of Photonics exhibition in Munich, Germany, industrial solutions and laser giant Trumpf presented a new materials processing laser system solution specified to improve welding processes.The system combines several sensors that monitor all process steps during laser welding. An integrated AI quality control system checks the weld seams, for example, and OCT (optical cohe...

    07-11
    Çeviriyi gör
  • Progress in the Application of China University of Science and Technology's Femtosecond Laser Processing Technology in the Biomedical Field

    Recently, Associate Professor Li Jiawen's research group at the Micro and Nano Engineering Laboratory of the School of Engineering Science, University of Science and Technology of China proposed a femtosecond laser dynamic holographic processing method suitable for efficient construction of three-dimensional capillary scaffolds, which is used to generate a three-dimensional capillary network. This...

    2024-02-11
    Çeviriyi gör
  • Scientists achieve extremely short laser pulses with a peak power of 6 terawatts

    RIKEN's two physicists have achieved extremely short laser pulses with a peak power of 6 terawatts (6 trillion watts) - roughly equivalent to the power generated by 6000 nuclear power plants. This achievement will contribute to the further development of attosecond lasers, for which three researchers were awarded the Nobel Prize in Physics in 2023. This study was published in the journal Nature Ph...

    2024-04-22
    Çeviriyi gör
  • Nature Photonics | New Comb Laser Assists Stable and Efficient Generation of Multi wavelength Signals

    Recently, researchers have developed a comb laser with higher stability and efficiency. The use of synthetic reflection self injection locking micro comb design enables the laser to achieve stability and increase conversion efficiency by more than 15 times. This efficient, stable, and easy to manufacture design is expected to make rapid progress in fields such as portable sensors, autonomous navig...

    2024-03-02
    Çeviriyi gör
  • Fiber laser array for single pixel imaging is expected to achieve remote detection

    Single pixel imaging (SPI) is a novel computational imaging technique that has been widely studied in recent years. This technology only uses single pixel detectors without spatial resolution to obtain spatial information of targets.It has unique advantages and compensates for the shortcomings of traditional imaging technologies based on array detectors, such as relatively immature or expensive ar...

    2024-05-15
    Çeviriyi gör