Türkçe

Breaking the limits of optical imaging by processing trillions of frames per second

791
2024-04-08 15:40:00
Çeviriyi gör

Pursuing higher speed is not just exclusive to athletes. Researchers can also achieve such feats through their findings. The research results of Professor Liang Jinyang and his team from the National Institute of Science (INRS) have recently been published in the journal Nature Communications.

The team located at the INRS É nergie Mat é riaux T é l é communications research center has developed a new type of ultrafast camera system that can capture up to 156.3 trillion frames per second with astonishing accuracy. For the first time, a single ultra fast demagnetization of two-dimensional optical imaging has been achieved. This new device called SCARF (Scanning Aperture Real Time Femtosecond Photography) can capture transient absorption in semiconductors and ultrafast demagnetization of metal alloys. This new method will help advance the knowledge frontier in a wide range of fields such as modern physics, biology, chemistry, materials science, and engineering.

Professor Liang is renowned as a pioneer in the field of ultrafast imaging. In 2018, as a major developer, he made significant breakthroughs in this field, laying the foundation for the development of SCARF.

So far, ultrafast camera systems mainly use a frame by frame sequential capture method. They will obtain data through brief and repeated measurements, and then combine all the content to create a movie that reconstructs the observed motion.

Professor Liang Jinyang said, "However, this method can only be applied to inert samples or phenomena that occur in exactly the same way every time. Fragile samples, let alone non repeatable or ultrafast phenomena, cannot be observed with this method."

"For example, phenomena such as femtosecond laser ablation, interaction between shock waves and live cells, and optical chaos cannot be studied in this way," explained Liang Jinyang.

The first tool developed by Professor Liang helped fill this gap. The T-CUP (trillion frames per second compressed ultrafast photography) system is based on passive femtosecond imaging and can capture billions (1013) of frames per second. This is an important first step towards ultrafast, single shot real-time imaging.

SCARF has overcome these challenges. Its imaging method can scan the static coding aperture ultra fast without cutting the ultra fast phenomenon. This can provide a full sequence encoding rate of up to 156.3 THz for each pixel on cameras with charge coupled devices (CCD). These results can be obtained in both reflection and transmission modes at adjustable frame rates and spatial scales in a single attempt.

SCARF makes it possible to observe unique phenomena that are ultrafast, non repeatable, or difficult to reproduce, such as shock wave mechanics in living cells or substances. These advances may be used to develop better drugs and medical methods.

More importantly, SCARF promises to bring very attractive economic byproducts. Axis Photonique and Few Cycle have collaborated with Professor Liang's team to produce a saleable version of their patent pending discovery. This is an excellent opportunity for Quebec to consolidate its enviable position as a leader in photonics.

Source: Laser Net

İlgili öneriler
  • Scientists achieve extremely short laser pulses with a peak power of 6 terawatts

    RIKEN's two physicists have achieved extremely short laser pulses with a peak power of 6 terawatts (6 trillion watts) - roughly equivalent to the power generated by 6000 nuclear power plants. This achievement will contribute to the further development of attosecond lasers, for which three researchers were awarded the Nobel Prize in Physics in 2023. This study was published in the journal Nature Ph...

    2024-04-22
    Çeviriyi gör
  • Hyperspectral imaging technology: a comprehensive guide from principles to applications

    Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.Introduction to hy...

    2024-04-16
    Çeviriyi gör
  • The world's first 40000 watt groove laser cutting machine is put into production in China

    On the morning of August 26th, the world's first large-scale 40000 watt groove laser cutting machine production ceremony was successfully held at Shandong Century Zhenghua Metal Technology Co., Ltd. located in Zhoucun District, adding another boost to the rapid development of Zhoucun's stainless steel industry chain.Source:博览新闻

    2023-08-28
    Çeviriyi gör
  • Scientists simulate the conditions that allow photons to collide with photons by using lasers

    As far as quantum physics is concerned, one of the most striking predictions is that matter can be produced entirely from light (i.e., photons). Pulsars are an example of an object capable of achieving this feat.In a recent study reported in the journal Physical Review Letters, a research team led by scientists at Osaka University simulated the conditions that allow photons to collide with photons...

    2023-08-11
    Çeviriyi gör
  • AM Research has released its latest quarterly data and forecast report

    Recently, additive manufacturing research company AM Research released its latest quarterly data and forecast report, which deeply analyzes the latest developments in the global 3D printing market, covering multidimensional analysis of suppliers, printing technology, geographic location, and application areas.According to the report, the global 3D printing market once again demonstrates strong gro...

    2024-09-29
    Çeviriyi gör