Türkçe

New method doubles and accelerates thermal tuning of optical chips, supporting two current and voltage regulation methods

167
2024-04-02 14:36:03
Çeviriyi gör

Silicon based quantum chip technology is one of the hot research directions in the field of integrated photonics. Thanks to compatibility with CMOS technology and silicon material characteristics, silicon-based integrated optical chips and devices have many advantages such as low cost, small size, low power consumption, and high integration, providing an ideal platform for large-scale optical computing, optical quantum computing, and information processing applications.

The Mach Zehnder interferometer (MZI) is a core device for high-precision programming operations in optical (quantum) computing chips. By combining and modulating the MZI and phase shifter, the key step of quantum state encoding can be completed, improving the information processing capability of optical quantum chips.

Specifically, the experimenter adjusts the phase difference of the transmitted light in the upper and lower arms of the MZI by applying different currents and voltages, thereby changing the intensity and phase of the output light, resulting in interference and achieving control of the optical path. To maximize the accuracy of chip calculations, it is necessary to accurately find the functional relationship between the phase shifter and the driving voltage and current. With the sharp increase in the number of connected MZIs on the chip, the combination of current, voltage, and phase shifter results in an exponential increase. Therefore, it is particularly important to find an efficient and feedback based current and voltage regulation method for phase shifters.

Thermal tuning test plan for MZI silicon polishing chip
The Sizhen programmable multi-channel current (voltage) source has a compact size and can achieve up to 64 channels of high-precision constant current and constant voltage output. The experimenter connected the current and voltage source to the PCB download adapter board through a shielded cable via SCSI, which can simultaneously apply appropriate voltage or current to 64 channels and adjust to obtain the desired optical signal. The loading values of each channel are initially random, and the experimenter finds the appropriate value through each iteration of the feedback function to achieve fast switching of current and voltage setting values. Among them, the maximum single channel current value of the series products can reach 100mA.

This solution supports two current and voltage regulation methods:
1. Manual adjustment: Directly input indicators through upper computer software
2. Python instruction automation control: The current and voltage source is programmed in Python to transmit control signals to the chip, then the PD value is detected and fed back to the current and voltage source through computer coding to change the control signal until the desired result is obtained.

Figure (a) shows a chip structure that can achieve any unitary transformation, and Figure (b) shows a chip structure that can achieve any two bit quantum operation, integrating a large number of MZI devices on the chip

Thermal tuning testing scheme for MZI silicon zenith computing chip

Source: Guangxing Tianxia

İlgili öneriler
  • Quantum droplets reveal a new field of macroscopic complexity

    Scientists have advanced this field by stabilizing exciton polaritons in semiconductor photonic gratings, achieving long-lived and optically configurable quantum fluids suitable for complex system simulations.Researchers from Leicester CNR Nanotec and the School of Physics at the University of Warsaw used a new generation of semiconductor photonic gratings to optically customize the composite of q...

    2024-03-28
    Çeviriyi gör
  • BluGlass successfully raised $5.87 million to accelerate GaN laser production and delivery

    Recently, BluGlass, a leading global semiconductor development company, successfully completed its stock purchase plan (SPP) and raised $5.87 million in funds (excluding costs). This SPP provides eligible shareholders with the opportunity to subscribe to up to $100000 in new shares of BluGlass at a discounted price of $0.037 per share, along with free additional options. This initiative has gained...

    2024-04-12
    Çeviriyi gör
  • New progress in in-situ identification and quantitative research of methane carbon isotopes in the ocean

    Recently, Zhang Xin's research team from the Institute of Oceanography, Chinese Academy of Sciences, based on the in-situ laser Raman spectroscopy technology, made new progress in the in-situ recognition and quantification of methane carbon isotopes by using the significant differences in the Raman spectra of methane carbon isotopes (13CH4 and 12CH4). The relevant results were recently published i...

    2023-10-13
    Çeviriyi gör
  • Han's Laser New Product Debuts at 2025 Munich Shanghai Light Expo

    New product launch of "Blue Hurricane" red blue integrated laser1. Ultra high power: The "red blue integrated" laser, with optimized optical path design and heat dissipation system, can stably output power exceeding industry standards, meeting high demand application scenarios.2. Dual high brightness: Integrating advanced wavelength modulation technology and materials science, both red and blue l...

    03-07
    Çeviriyi gör
  • Researchers have placed photon filters and modulators on standard chips for the first time

    Researchers at the University of Sydney combined photon filters and modulators on a single chip, enabling them to accurately detect signals on the broadband RF spectrum. This work brings photonic chips closer to one day, potentially replacing larger and more complex electronic RF chips in fiber optic networks.The Sydney team utilized stimulated Brillouin scattering technology, which involves conve...

    2023-12-26
    Çeviriyi gör