Türkçe

Enhanced dielectric, electrical, and electro-optic properties: investigation of the interaction of dispersed CdSe/ZnS quantum dots in 8OCB liquid crystals in the intermediate phase

878
2024-03-04 13:52:02
Çeviriyi gör

author
Elsa Lani, Aloka Sinha

abstract
At present, the progress in developing new liquid crystal materials for next-generation applications mainly focuses on improving the physical properties of liquid crystal systems.

Recent research progress has shown that functionalized nanoparticles embedded in LC matrix can significantly alter the properties of LC materials based on the interaction between host molecules and guest particles. In this regard, this study reports the effects of core-shell CdSe/ZnS quantum dot dispersion on the dielectric, electrical, and electro-optical properties of 8OCB LC doped with different concentrations. The doped samples exhibit ion release behavior, and this effect becomes more pronounced when the doping concentration in the liquid chromatography system increases to 0.2 wt%. It is explained that due to the enhanced interaction between QD ligands and rod-shaped LC molecules, quantum dots have obtained the form of growing handle shaped ellipsoids.

Among all the studied samples, significant temperature changes were observed in the diffusion constant, conductivity, ion mobility, and average relaxation time of ions. In addition, the thermal distribution of dielectric anisotropy, threshold voltage, and opening elastic constant all show a decreasing trend, with an increasing doping concentration. The dual relaxation mechanisms of corresponding nematic and dimeric materials were experimentally studied, providing two rotational viscosities in both the original and quantum dot dispersed LC samples. The transmittance voltage curve reveals the presence of residual values in dispersed samples and is related to the volatile memory effect. In the original liquid chromatography system, the photoluminescence intensity of low doped samples was slightly enhanced and further decreased with increasing doping concentration.

All these findings indicate that functionalized quantum dots make a significant contribution to the studied performance in terms of the interaction between LC and doped materials. This study will further elucidate the potential application of quantum dots in future liquid chromatography-based devices and the selection of optimal quantum dot concentrations based on their properties.

Graph Summary

Source: Laser Net

İlgili öneriler
  • Breakthrough in optical quantum simulation using long-lived polariton droplets

    Abstract: A groundbreaking discovery by CNR Nanotec and scientists from the University of Warsaw has revealed a robust method for creating long-lived quantum fluids using semiconductor photonic gratings. This study, published in the journal Nature Physics, marks a significant step forward in simulating complex systems through unique polariton droplets that demonstrate stability in lifespan and rec...

    2024-03-27
    Çeviriyi gör
  • Micro ring resonators with enormous potential: hybrid devices significantly improve laser technology

    The team from the Photonic Systems Laboratory at the Federal Institute of Technology in Lausanne has developed a chip level laser source that can improve the performance of semiconductor lasers while generating shorter wavelengths.This groundbreaking work, led by Professor Camille Br è s and postdoctoral researcher Marco Clementi from the Federal Institute of Technology in Lausanne, represe...

    2023-12-11
    Çeviriyi gör
  • Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity

    Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity - a quantum cavity is an optical device composed of two excellent small mirrors that can capture light in a small area for a long time.This model and its predictions can be used for the next generation of superradiance lasers. They can be used and observed in cutting-edge cavity/wa...

    2024-02-21
    Çeviriyi gör
  • The new progress of deep ultraviolet laser technology is expected to change countless applications in science and industry

    Researchers have developed a 60 milliwatt solid-state DUV laser with a wavelength of 193 nanometers using LBO crystals, setting a new benchmark for efficiency values.In the fields of science and technology, utilizing coherent light sources in deep ultraviolet (DUV) regions is of great significance for various applications such as lithography, defect detection, metrology, and spectroscopy. Traditio...

    2024-04-10
    Çeviriyi gör
  • Multiple international laser companies continue to increase investment in the Chinese market

    In early spring of 2025, China's laser industry once again attracted the attention of global laser giants, ushering in a new wave of international investment boom.After several global laser giants accelerated their layout in China in 2024, in February 2025, Carl Zeiss from Germany and Bystronic from Switzerland, two global giants in the optical and laser fields, also announced significant expansio...

    02-15
    Çeviriyi gör