Türkçe

Progress in the study of ultrafast electron dynamics using short light pulses

194
2024-01-08 14:53:56
Çeviriyi gör

When electrons move in molecules or semiconductors, their time scale is unimaginably short. The Swedish German team, including Dr. Jan Vogelsang from the University of Oldenburg, has made significant progress in these ultrafast processes: researchers are able to track the dynamics of electrons released on the surface of zinc oxide crystals using laser pulses with nanoscale spatial resolution and previously unattainable temporal resolution.

The relevant paper is titled "Time Resolved Photoemission Electron Microscope on a ZnO Surface Using an Extreme Ultraviolet Attention Pulse Pair" and published in Advanced Physics Research.

Through these experiments, the research team has demonstrated the applicability of this method, which can be used to better understand the electronic behavior of electrons in nanomaterials and new solar cells. Researchers from Lund University in Sweden, including Professor Anne L'Huillier, one of the three Nobel laureates in physics last year, also participated in this study.

Here, this work demonstrates the use of spatial and energy resolved photoelectrons to perform attosecond interferometric measurements on zinc oxide (ZnO) surfaces. The combination of optical emission electron microscopy and near-infrared pump extreme ultraviolet probe laser spectroscopy resolved the instantaneous phase of the infrared field with high spatial resolution. The research results indicate that zinc oxide nuclear energy with low binding energy is very suitable for spatially resolved attosecond interferometry measurement experiments. A significant phase shift of the attosecond beat frequency signal was observed across the entire laser focus, attributed to the wavefront difference between the surface pump field and the probe field.

Figure 1: Characterization of the experimental setup.

In the experiment, the research team combined a special electron microscope, a light emission electron microscope (PEEM), with attosecond physics techniques. Scientists use extremely short duration light pulses to excite electrons and record their subsequent behavior. This process is very similar to the process of capturing rapid motion with a flash in photography.

As reported by the research group, similar experiments have yet to achieve the time accuracy required to track electronic motion. The motion speed of these tiny elementary particles is much faster than that of larger and heavier atomic nuclei. However, in this study, scientists combined the highly demanding techniques of light emission electron microscopy and attosecond microscopy without affecting spatial or temporal resolution.

Figure 2: Spectral results of zinc oxide surface.
Vogelsang said, "Now we can finally use attosecond pulses to study in detail the interaction between light and matter at the atomic level and in nanostructures.".

One factor contributing to this progress is the use of a light source that can generate a large number of attosecond pulse flashes per second - in this case, this light source can generate 200000 light pulses per second. Each flash releases an average of one electron from the surface of the crystal, allowing researchers to study their behavior without affecting each other. The more pulses generated per second, the easier it is to extract small measurement signals from the dataset.

Figure 3: Spatial resolved attosecond interferometry measurement of zinc oxide surface.

The experiment of this study was conducted in Anne L'Huillier's laboratory at Lund University in Sweden, which is one of the few research laboratories in the world with the necessary technical equipment for such experiments.

A similar experimental laboratory is currently being established at the University of Oldenburg. In the future, the two teams plan to continue conducting research to explore the behavior of electrons in various materials and nanostructures.

This work provides a clear approach for high spatial resolution attosecond interferometry measurements in the field of atomic scale surfaces, and opens the way for a detailed understanding of the interaction between nanoscale light and matter.

Source: Sohu

İlgili öneriler
  • Advanced OPA enhances the energy of attosecond imaging ultra short pulses

    The attosecond level ultra short laser pulse provides a powerful method for detecting and imaging ultra short processes, such as the motion of electrons in atoms and molecules.Although ultra short laser pulses can be generated, generating ultra short and high-energy pulses is a continuous challenge. In order to expand the photon energy, photon flux, and continuous bandwidth of isolated attosecond ...

    2024-05-11
    Çeviriyi gör
  • Atomstack Maker A5 V2: A laser engraving machine suitable for beginners

    In the recent DIY field, innovative and increasingly affordable laser engraving machines have emerged, mainly designed for first-time users in this field. A particularly noteworthy example in this regard is the Atomstack Maker A5 V2 model. This device is known for its versatility and ease of use, making it an ideal choice for beginners in the world of laser engraving.The Atomstack Maker A5 V2 is a...

    2024-01-03
    Çeviriyi gör
  • Synchrotron X-ray imaging technology

    According to a recent study published in the journal Science Advances, it reveals how early mammals grew and developed during critical periods of their long 'life history'. A research team including Queen Mary University of London used synchrotron X-ray tomography technology to image the growth rings in fossilized tooth roots, in order to infer the lifespan, growth rate, and even sexual maturity t...

    2024-08-15
    Çeviriyi gör
  • Automated methods for background estimation in laser spectroscopy

    A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the lase...

    2023-11-24
    Çeviriyi gör
  • IPG Photonics announces 2024 financial loss of $162 million

    On February 11th, global industrial fiber laser giant IPG Photonics announced its financial performance for the fourth quarter and full year of 2024. Annual sales have fallen below the $1 billion mark for the first time, with a year-on-year decline of 24% and a pre tax loss of up to $162 million. As an industry leader, IPG's financial report not only reflects the deep adjustment faced by the ind...

    02-13
    Çeviriyi gör