Türkçe

High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope

538
2023-12-25 14:16:07
Çeviriyi gör

A sketch of the imaging and holographic parts of a transient holographic microscope, including a pulse sequence, to illustrate the signal modulation method. By imaging the pinhole array at the sample position, a diffraction limited excitation spot array can be created, allowing for the simultaneous collection of transient data around 100 excitation spots.

Femtosecond transient microscopy is an important tool for studying the ultrafast transport characteristics of excited states in solid samples. Most implementations are limited to photoexcitation of a single diffraction limit point on the sample and tracking the temporal evolution of subsequent carrier distribution, thus covering a very small sample area.

Recently, scientists from Italy and Spain have demonstrated how to construct an all optical phase-locked camera by using off-axis holography, significantly increasing the field of view of ultrafast microscopes. The camera decouples the signal demodulation speed from the maximum detector frame rate.

In this original work published in the journal Ultrafast Science, researchers demonstrated simultaneous transient imaging of dozens of individual nanoobjects, with the entire field of view excitation being desirable. It is not yet clear how to apply new holographic techniques in solid-state samples that require diffraction limit excitation. Ideally, a diffraction limited excitation point array covering the entire field of view will be generated, so that multiple points in the large sample area can be detected simultaneously.

The article "High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope" demonstrates how to achieve this feature by imaging a pinhole array at the sample position. This not only helps to obtain statistical information about sample photophysics, but also for uniform samples, the signals of all light spots can be averaged, greatly improving the signal-to-noise ratio.

Source: Laser Net

İlgili öneriler
  • Each unit of metamaterials used for simulating optical calculations is smaller than the wavelength of the light they are designed to manipulate

    The new architecture based on metamaterials provides a promising platform for constructing large-scale production and reprogrammable solutions that can perform computational tasks using light.The idea of simulating computers - a device that uses continuous variables instead of zero sum ones - may evoke outdated machinery, from mechanical watches to bomb sight devices used in World War II. But emer...

    2024-03-30
    Çeviriyi gör
  • South Korean DE&T will open new subsidiaries in the United States and Canada

    Recently, DE&T, a South Korean manufacturer of secondary batteries and display laser equipment, announced that the company will further expand its overseas business by opening new subsidiaries in the United States and Canada. According to its claim, this move is to carry out maintenance services for laser equipment locally. As of now, DE&T's overseas subsidiaries have increased from two to...

    04-08
    Çeviriyi gör
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    Femtosecond laser emits ultra short light pulses with a duration of less than 1 picosecond, reaching the femtosecond domain. The characteristics of femtosecond lasers are extremely short pulse width and high peak intensity.Ultra short blasting can minimize waste heat, ensure precise material processing, and minimize incidental damage. Their peak intensities can cause nonlinear optical interactions...

    2024-02-28
    Çeviriyi gör
  • Scientists have developed the most powerful ultraviolet laser using LBO crystals

    It is reported that recently researchers from the Chinese Academy of Sciences have achieved the highest power output of 193 nm and 221 nm lasers using lithium borate (LBO) crystals. This achievement lays the foundation for the further application of the laser in deep ultraviolet (DUV) spectroscopy.The laser in DUV spectroscopy has many applications in science and technology, such as defect detecti...

    2024-04-07
    Çeviriyi gör
  • Laser surface treatment of Ti6Al4V alloy: finite element prediction of melt pool morphology and microstructure evolution

    Researchers from the University of Calabria, University of Salento, and LUM University in Italy have reported on the progress of finite element prediction research on laser surface treatment of Ti6Al4V alloy: melt pool morphology and microstructure evolution. The related research was published in The International Journal of Advanced Manufacturing Technology under the title "Laser surface treatmen...

    04-10
    Çeviriyi gör