Türkçe

Laser chip manufacturer Shijia Photon will make a profit of 65 million yuan in 2024

827
2025-01-21 16:33:33
Çeviriyi gör

Shijia Photon disclosed its 2024 annual performance forecast on the evening of January 17th, expecting to achieve a revenue of 1.074 billion yuan in 2024, a year-on-year increase of 42.36%; Net profit attributable to the parent company was 65 million yuan, with a loss of 47.55 million yuan in the same period last year; Deducting non net profit is expected to be 48.1 million yuan, with a loss of 66.82 million yuan in the same period last year.

 


According to the data, the company's main products include PLC optical splitter chip series, AWG chip series, VOA chip series, DFB laser chip series, MPO high-density fiber optic connectors, isolators, and parallel optical component series.

According to the announcement, driven by the demand for AI computing power, the data communication market is growing rapidly; The company adapts to market demand, continuously invests in research and development and technological innovation, highlights its competitive advantages in products, and improves customer recognition. The order volume of AWG series products, DFB series products, MPO related products, indoor optical cables, and cable polymer materials all increased compared to the same period last year.

Source: Yangtze River Delta Laser Alliance

İlgili öneriler
  • WVU engineers develop laser systems to protect space assets from the impact of Earth orbit debris

    The research from the University of West Virginia has been rewarded, as debris scattered in planetary orbits that pose a threat to spacecraft and satellites may be pushed away from potential collision paths by a coordinated space laser network.Hang Woon Lee, director of the Space Systems Operations Research Laboratory at the University of West Virginia, said that artificial debris dumps, including...

    2023-10-10
    Çeviriyi gör
  • Scientists at Peking University invent ultra-thin optical crystals for next-generation laser technology

    BEIJING, Dec. 19 (Xinhua) -- A team of Chinese researchers used a novel theory to invent a new type of ultrathin optical crystal with high energy efficiency, laying the foundation for next-generation laser technology.This photo taken on Dec. 15, 2023 shows a Twist Boron Nitride (TBN) crystal placed on a piece of fused silica in Peking University, Beijing, capital of China. A team of Chinese rese...

    2023-12-20
    Çeviriyi gör
  • Researchers Obtaining Scientific Returns from Raman Spectroscopy for External Bioexploration Using Lasers

    We investigated the potential of laser selection in a wide optical range from ultraviolet to visible light, and then to infrared (excitation wavelengths of 325, 532, 785, and 1064 nm), in order to combine and analyze extreme microorganisms related to Earth (such as Cryptomeria elegans, cold floating nematodes, and circular green algae), carbon water compound molecules, as well as simulated mineral...

    2023-10-23
    Çeviriyi gör
  • Panasonic Launches 3D Short Pulse Fiber Precision Laser Marking Machine LP-ZV

    Recently, Panasonic has launched the latest laser marking technology product - the LP-ZV series, which can provide high-precision and high-efficiency laser marking.Panasonic claims that the LP-ZV series has set a new standard that can bring excellent speed and accuracy in operation, suitable for various applications such as marking text, graphics, barcodes, and 2D code.The company stated that the ...

    2023-11-08
    Çeviriyi gör
  • A research team at City University of Hong Kong has developed a multispectral, ultra-low dose photoacoustic microscope system

    Optical resolution "photoacoustic microscope is a new biomedical imaging technology, which can be used in the research of cancer, diabetes, stroke and other diseases. However, insufficient sensitivity has always been a long-term obstacle to its wider application.According to Maims Consulting, a research team from City University of Hong Kong (CityU) has recently developed a multispectral, ultra-lo...

    2023-09-21
    Çeviriyi gör