Türkçe

Optical Capture of Optical Nanoparticles: Fundamentals and Applications

888
2023-11-25 14:18:38
Çeviriyi gör

A new article published in Optoelectronic Science reviews the basic principles and applications of optical capture of optical nanoparticles. Optical nanoparticles are one of the key elements in photonics. They can not only perform optical imaging on various systems, but also serve as highly sensitive remote sensors.

Recently, the success of optical tweezers in separating and manipulating individual optical nanoparticles has been demonstrated. This opens the door to high-resolution, single particle scanning, and sensing.

This article summarizes the most relevant results in the rapidly growing field of optical capture of individual optical nanoparticles. According to the different materials and their optical properties, optical nanoparticles can be divided into five categories: plasma nanoparticles, lanthanide doped nanoparticles, polymer nanoparticles, semiconductor nanoparticles, and nanodiamonds. For each scenario, the main progress and applications were described.

Plasma nanoparticles have a high polarization rate and high photothermal conversion efficiency, therefore, it is necessary to make a critical selection of their capture wavelength. The typical application of optical capture based on the luminescent properties of plasma nanoparticles is the study of particle particle interactions and temperature sensing. This study was conducted by analyzing the radiation absorbed, scattered, or emitted by nanoparticles.

Lanthanide doped nanoparticles have a narrow emission band, longer fluorescence lifetime, and temperature sensitive emission intensity. This article reviews the temperature sensing of batteries achieved by single optical capture of lanthanide doped nanoparticles. The structural characteristics of the main body of lanthanide doped nanoparticles allow these particles to rotate. For a fixed laser power, the rotational speed depends on the viscosity of the medium. Research has shown that this characteristic can be used to measure intracellular viscosity. In addition, the sufficient surface functionalization of lanthanide doped nanoparticles enables them to be used for chemical sensing.

Dyes are incorporated into polymer nanoparticles to emit light and facilitate tracking within optical traps. This article reviews the research on the dynamics of individual nanoparticles and the characterization of biological samples using particle luminescence tracking ability. It not only helps to gain a more thorough understanding of the optical and mechanical interactions between captured lasers and optical particles, but also points out the enormous potential of combining optical capture with fluorescence or scanning microscopy.

Semiconductor nanoparticles have received widespread attention due to their unique photoluminescence properties, such as tunable emission, low sensitivity to photobleaching, high quantum yield, and chemical stability. This article reviews the research progress on using optical tweezers to study and improve the luminescence performance of individual semiconductor nanoparticles. They also summarized research on using semiconductor particles as local excitation sources for cell imaging.

The fluorescence of nanodiamonds is caused by point defects in the diamond structure. Bibliographic research indicates that there are limited reports on optical capture of nanodiamonds. The first report on this topic shows that a single nanodiamond can be used as a magnetic field sensor. Later, optically captured nanodiamonds were also proven to be useful as cell thermometers.

This review article also reveals how the combination of optical capture and colloidal optical nanoparticles can be used for various applications. Despite the enormous potential of optical tweezers in the study of individual nanoparticles, this field is still in its early stages. Most works focus on application rather than filling knowledge gaps. There are still some unresolved issues.

This review summarizes the challenges faced by optical capture of nanoparticles, including the lack of precise formulas to describe optical force, uncertainty in spatial resolution, and possible sensing biases. This review is expected to promote the continuous enrichment and development of principles, technologies, equipment, and application research in this field.

Source: Laser Net


İlgili öneriler
  • Microcomb launches a simplified design for powerful lasers based on chips

    Researchers at the University of Rochester have created new micro comb lasers that go beyond previous limitations and have simple designs suitable for various applications. The research results are published in Nature Communications.Optical frequency combs are optical measurement instruments that have revolutionized atomic clocks, spectroscopy, metrology, and other fields. However, the difficulty ...

    2024-05-25
    Çeviriyi gör
  • New insights into the interaction between femtosecond laser and living tissue

    The N-linear optical microscope has completely changed our ability to observe and understand complex biological processes. However, light can also harm organisms. However, little is known about the mechanisms behind the irreversible disturbances of strong light on cellular processes.To address this gap, the research teams of Hanieh Fattahi and Daniel Wehner from the Max Planck Institute for Photos...

    2024-06-07
    Çeviriyi gör
  • The Science Island team has made breakthroughs in high pulse energy mid infrared fiber transmission

    Recently, the Jiang Haihe Research Group of the Health Institute of the Chinese Academy of Sciences Hefei Institute of Materia Medica made important progress in the research of the high-energy pulsed laser transmission system in the mid infrared band, and designed a 78 μ The 6-hole microstructure anti resonant hollow core fiber (AR-HCF) with a larger core diameter achieved efficient transmissio...

    2024-03-23
    Çeviriyi gör
  • Stuttgart University researchers develop a new high-power 3D printed micro optical device for compact lasers

    Researchers from the Fourth Institute of Physics at the University of Stuttgart have demonstrated the feasibility of 3D printed polymer based micro optical devices in harsh laser environments.This study was detailed in the Journal of Optics, outlining the use of 3D printing technology to directly manufacture microscale optical devices on fibers, seamlessly integrating fibers and laser crystals int...

    2024-01-09
    Çeviriyi gör
  • Dazu Photonics launched the third generation of high power fiber laser successfully increased the product power to 50kW

    In recent years, with the vigorous development of new energy and other industries, the improvement of environmental awareness and the increasing demand for new applications, the demand for fiber lasers in intelligent manufacturing is increasing, and the demand for power is also increasing, and high-power fiber lasers can significantly improve production efficiency and are widely sought after by th...

    2023-09-02
    Çeviriyi gör