Türkçe

OpenLight raises $34 million for silicon photonics development

605
2025-08-27 10:38:33
Çeviriyi gör

OpenLight Photonics, the developer of photonic application-specific integrated circuit (PASIC) design tools established by software giant Synopsys, says it has raised $34 million in venture finance.

The Santa Clara firm, whose process design kits (PDKs) support the integration of indium phosphide (InP) and silicon photonics components in complex layouts, says that the series A funding will see it ramp up reference designs for cutting-edge devices wanted for optical interconnects in AI data center links.

 



Custom PASIC design


Established in 2022 following a collaboration between Synopsys and Juniper Networks, OpenLight says that its PDK is already being used by more than 20 customers to design and fabricate PASICs, alongside validation by silicon photonics foundry partner Tower Semiconductor.

“This round of financing completes OpenLight's transition from a Synopsys subsidiary to a high-velocity, venture-backed company positioned to address the growing demand for faster and more energy-efficient data movement in AI data center networks,” it announced.

“As the shift from electrical to optical interconnects accelerates to support AI-scale workloads, integrated photonics is emerging as a core enabler of next-generation data center infrastructure.”

OpenLight also sees applications beyond the data center, citing opportunities in telecommunications, automotive and industrial sensing, healthcare, and quantum computing.

Reference designs
Provided by a venture consortium led by Xora Innovation and Capricorn Investment Group, the cash injection will see OpenLight expand its PDK library of active and passive photonics components, including its leading-edge 400 Gb/s modulators and InP heterogeneously integrated on-chip laser technology

“OpenLight will also ramp up its standard-based reference photonics integrated circuits (PICs) at 1.6 Tb/s and 3.2 Tb/s to provide customers with the most flexible and leading-edge component design library available in the market,” it added.

“The company will scale its team to support customers as they transition to volume production over the next 12 months.”

OpenLight’s Adam Carter also commented: “As we enter this next phase of our company's growth, we are excited to be adding such strong investors with deep roots and expertise in the semiconductor and photonics industry.

“With this strong syndicate of investors, we can push the boundaries of innovation and deliver transformative solutions to our customers. This funding will allow us to scale our operations, deepen our research and development efforts, and bring our groundbreaking products to market faster.

“We believe heterogeneous integrated silicon photonics will transform the way data is processed and transmitted, and we're excited to be at the forefront of this revolution."

Achieving scale
Phil Inagaki, a managing partner and chief investment officer at Xora, added: “Xora has conviction that the field of photonics is going to see exponential growth in the coming years, and III-V heterogeneous integration is one of the foundational capabilities that will enable this growth.

“We see OpenLight not only as a technology leader in this field, but also as a company positioned to quickly scale manufacturing with foundry partners.

“One of the critical challenges for the photonics industry in the back half of this decade will be achieving scale, and we see OpenLight's PDK as an important part of the solution.”

Aside from Xora and Capricorn, the series A round features Mayfield, Juniper Networks (which has just become part of Hewlett Packard Enterprise), Lam Capital, New Legacy Ventures, and K2 Access.

Dipender Saluja, managing partner at Capricorn's Technology Impact Funds, noted: “Optical connectivity in data centers has become critical for next-generation scale-up and scale-out [of] AI architectures.

“OpenLight's heterogeneous integration delivers on all three axes of performance, reliability and cost, which will enable the explosive growth of optical I/O."

Source: optics.org

İlgili öneriler
  • Excitation of nanostructures with two near-infrared lasers to increase emission intensity

    Recently, researchers from the Ultrafast Phenomena Laboratory at the University of Warsaw in Poland, in collaboration with a team from the Institute of Low Temperature and Structural Studies at the Polish Academy of Sciences, discovered an enhanced effect on upconversion nanoparticle emission. Relevant personnel have demonstrated that simultaneously exciting these nanostructures with two near-infr...

    09-28
    Çeviriyi gör
  • Multi functional materials for solar cells and organic light-emitting diodes to achieve high performance and stability

    Through joint research, a team developed a 4-amino-TEMPO derivative with photocatalytic performance and successfully used it to produce high-performance and stable fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs). This paper was published in the journal Materials and Energy Today.The developed 4-amino-TEMPO derivatives have the characteristic of ...

    2024-06-03
    Çeviriyi gör
  • Redefining optical limits: Engineers discover enhanced nonlinear optical properties in 2D materials

    Recently, according to a paper published in Nature Communications titled "Phonoenhanced nonlinearities in hexagonal boron nitride," engineers from Columbia University collaborated with theoretical experts from the Max Planck Institute of Material Structure and Dynamics to discover that pairing lasers with lattice vibrations can improve the nonlinear optical properties of layered two-dimensional ma...

    2024-02-23
    Çeviriyi gör
  • Laser assisted detection of past climate in ice cores

    Around the poles, ice accumulated over millions of years can reach depths of several kilometers. The undisturbed deep ice preserves information about the past. The air bags and particles trapped in the ice tell scientists what the atmosphere used to be like. This has aroused great interest among paleoclimatologists in glacier ice cores.By regularly sampling the ice core at its depth, they can reco...

    2023-11-01
    Çeviriyi gör
  • From Fiction to Reality: Laser Cutting Technology Has Entered the Shipbuilding Industry

    Laser cutting is a type of metal processing. In industry, there are three main cutting methods: mechanical cutting, thermal cutting, and a set of high-precision cutting methods. Laser technology belongs to the third category. The cutting in this method occurs due to the influence of the laser beam on the product. In fact, it is the molten metal produced by rapid pulse point melting and then blowin...

    2023-12-28
    Çeviriyi gör