Türkçe

China University of Science and Technology realizes millisecond level integrated quantum memory

369
2025-03-31 15:52:20
Çeviriyi gör

Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the field of integrated quantum storage. The research team led by Li Chuanfeng and Zhou Zongquan has improved the storage time of integrated quantum memory from 10 microseconds to milliseconds based on their original noiseless photon echo (NLPE) scheme, while successfully breaking through the efficiency of traditional fiber delay lines. The achievement was published on March 26th in the internationally renowned academic journal Science Progress.


As a core device for overcoming channel loss and building large-scale quantum networks, the large-scale application of optical quantum memory requires the integration of devices to achieve the goal of small size and low power consumption. Since 2011, various processes have been used internationally to prepare integrated quantum memories in rare earth doped crystals. However, due to the difficulty in filtering out noise and limited storage efficiency in integrated devices, existing devices can only achieve storage in atomic excited states, with a storage time of only 10 microseconds. The storage efficiency is far lower than the transmission efficiency of fiber delay lines, fundamentally limiting their practical application in remote quantum communication.

To solve this problem, the research group of Li Chuanfeng and Zhou Zongquan used femtosecond laser microfabrication technology to prepare circularly symmetrical concave cladding optical waveguides in europium doped yttrium silicate crystals, achieving noise filtering based on polarization degrees of freedom. Combined with the team's original NLPE quantum storage solution, the storage efficiency was greatly improved, thus achieving spin wave integrated quantum storage in the atomic ground state [National Science Review 12, nwae 161 (2024)].

Recently, the team integrated a coplanar waveguide on the surface of a crystal and achieved dynamic decoupling control of the spin transition of europium ion nuclei within the waveguide by applying a radio frequency magnetic field, thereby extending the spin wave quantum storage lifetime to the millisecond level. When the storage time of optical qubits reaches 1.021 milliseconds, their storage efficiency reaches 12.0 ± 0.5%, which far exceeds the transmission efficiency of the corresponding delay fiber delay line (only 0.01%), fully proving that integrated quantum storage devices are no longer functionally replaceable by fiber delay lines.


Figure 1. Schematic diagram of long-life integrated quantum storage experiment, illustrating the details of the incident end face of the memory.

 



Figure 2. Efficiency and lifetime performance of integrated quantum memory. The performance of fiber optic delay lines is represented by blue dashed lines, and the red pentagram represents the performance of this achievement.

This work has increased the lifespan of integrated quantum memory from 10 microseconds to milliseconds, achieving a breakthrough in storage efficiency beyond fiber delay lines for the first time, laying a solid foundation for the practical application of integrated quantum storage in long-range quantum networks. At the same time, this achievement demonstrates the enormous potential of NLPE solutions in solving the signal-to-noise ratio problem of long-lived quantum storage. The reviewer highly praised: 'This is a very important achievement in the field of integrated quantum memories', “this work makes a significant contribution to the development of integrated and long-duration quantum memories”( This work has made significant contributions to the development of integrated and long-lived quantum memories.

The first author of this paper is Liu Yuping, a doctoral student in the Key Laboratory of Quantum Information, Chinese Academy of Sciences. This work has been supported by the Science and Technology Innovation 2030 Major Project, the National Natural Science Foundation of China, Anhui Province and the Chinese Academy of Sciences. Zhou Zongquan was supported by outstanding members of the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Source: opticsky

İlgili öneriler
  • Implementation of 20W high-power fiber optic frequency comb by the Institute of Physics, Chinese Academy of Sciences

    High power optical frequency combs play a crucial role in nonlinear precision spectroscopy, extreme ultraviolet optical frequency comb generation, nuclear atomic clock research, and other fields. Fiber optic femtosecond lasers are the preferred solution for achieving high power optical frequency combs due to their simple structure, stable performance, and easy amplification.However, due to the una...

    2023-10-11
    Çeviriyi gör
  • Free space nanoprinting beyond optical limitations can create 4D functional structures

    Two photon polymerization is a potential method for nanofabrication of integrated nanomaterials based on femtosecond laser technology. The challenges faced in the field of 3D nanoprinting include slow layer by layer printing speed and limited material selection due to laser material interactions.In a new report in Progress in Science, Chenqi Yi and a team of scientists in the fields of technical s...

    2023-10-09
    Çeviriyi gör
  • The company has made key breakthroughs in the development of laser micromachining systems

    3D-Micromac AG, a provider of laser micromachining systems, has announced new advances in laser micromachining solutions for magnetic sensors, micro-leds, manufactured power devices and advanced packaging of semiconductors.Since the first working laser came out more than 60 years ago, lasers have been widely used in the industrial market. Uwe Wagner, CEO of 3D-Mircomac, said: "In the semic...

    2023-08-04
    Çeviriyi gör
  • Toronto research has discovered 21 new sources of organic solid-state lasers

    Organic solid-state lasers (OSLs) are expected to achieve widespread applications due to their flexibility, tunability, and efficiency. However, they are difficult to manufacture and require over 150.000 possible experiments to find successful new materials, and discovering them will be a work of several lifetimes. In fact, according to data from the University of Toronto in Canada, only 10-20 new...

    2024-05-22
    Çeviriyi gör
  • Sunny Optical's "Optical Imaging Lens" Announced

    Recently, according to the information of the China National Intellectual Property Administration, Zhejiang Sunny Optics Co., Ltd. has obtained a patent named "Optical Imaging Lens", with authorization announcement No. CN221899396U and application date of 2024-01-31.The patent abstract shows that the present application discloses an optical imaging lens, comprising a barrel and first to eighth len...

    2024-10-31
    Çeviriyi gör