Русский

Focused Energy purchases two world-class high-energy lasers

435
2024-12-25 14:45:23
Посмотреть перевод

Recently, Focused Energy, a well-known foreign fusion energy startup, announced that it has officially signed an agreement to purchase two of the world's top high-energy lasers. These two large lasers will be deployed in the company's upcoming factory in the San Francisco Bay Area in the next two years.

Scott Mercer, CEO of Focused Energy, stated, "These lasers are currently the highest average power devices in the private sector, each capable of releasing over 1 kilojoule of energy towards targets, with a total investment of nearly $40 million.

The most advanced inertial restraint system currently available is located at the National Ignition Facility of the US government, which announced a breakthrough in "net gain" two years ago. There, physicists can conduct approximately 300 "shots" each year to study nuclear fusion. This is far below the demand of commercial nuclear fusion power plants. For example, the goal of 'concentrating energy' is to shoot 10 times per second.

The two new lasers from Focused Energy will be able to emit once per minute, although this is partly due to the active development of devices supporting them.

Doug Hammond, Vice President of the Laser Engineering Department of the company, further explained, "These subsystems are important demonstrations of the technology we need to build the final fusion pilot factory." He emphasized that the high-energy main amplifier is still under parallel development because such products do not yet exist in the market.

These lasers are not only a key part of the technology demonstration, but also fully customized and manufactured by Amplitude Lasers, a well-known ultrafast laser company in France. Each laser system covers an area of approximately 1600 square feet, equivalent to the size of a small residential building. Damien Buet, CEO of Amplitude Lasers, explained, "One of the reasons we haven't mass-produced such a large laser is that there isn't a significant demand in the market at the moment.

However, if Focused Energy can achieve its milestone goals, this situation may change. The commercial power plants designed by the company each require thousands of lasers. Buet pointed out, "The number of diodes required for a factory will far exceed the current global maximum production capacity. We need to expand the entire supply chain.

In order to ensure sufficient ignition energy and operational reliability of the power plant (even when some lasers require maintenance or replacement), the main challenge faced by Focused Energy is construction speed. Scott Mercer said, "Our target is 2035. The key is how quickly we can start mass producing lasers.

He added, "Even connecting a traditional power plant to the grid within 10 years is a highly challenging goal today
The kilojoule level laser of Amplitude Lasers is designed to test the physical properties required for effective direct drive compression of deuterium tritium fusion fuel targets. They will run at a high repetition rate of once every 60 seconds, enabling rapid design iterations.
This research was supported and funded by the German Federal Breakthrough Innovation Agency (SPRIND).

This three-year development plan will begin at the Amplitude Lasers Lisses facility near Paris in early 2025, building on the global momentum of inertial fusion energy triggered by the National Ignition Facility (NIF) fusion ignition breakthrough in December 2022. This initiative places the amplitude at the forefront of global development of clean energy solutions, utilizing cutting-edge laser technology to improve the parameters of inertial confinement fusion and advance the commitment to sustainable energy production.

We are seeking a nuclear fusion method called inertial confinement, in which several laser beams converge to compress fuel particles, causing their internal matter to fuse and release energy. This technology has demonstrated for the first time that net positive nuclear fusion power generation is possible, although there are still significant obstacles to overcome.

Source: OFweek

Связанные рекомендации
  • Which automotive parts can use laser soldering technology

    Laser soldering is widely used in the manufacturing of automotive parts. Here are some common automotive parts that can be welded using laser soldering:Automotive electronic control systemEngine Control Unit (ECU): The engine control unit is the "brain" of the car engine, which receives signals from various sensors and controls the operation of the engine based on these signals. Laser soldering ca...

    02-10
    Посмотреть перевод
  • Tsinghua University makes progress in the field of pre sensing optical computing

    In the era of the Internet of Things, visual image sensors, as key devices in the intelligent society, are embedded in various devices such as mobile communication terminals, smart wearable devices, automobiles, and industrial machines. With the continuous expansion of applications, higher requirements have been put forward for the system power consumption, response speed, safety performance, and ...

    2024-08-05
    Посмотреть перевод
  • The Boston University research team developed a high-throughput single-cell sorting technique based on stimulated Raman spectroscopy

    A Boston University research project has successfully developed an innovative single-cell sorting technique that uses stimulated Raman spectroscopy to replace traditional fluorescent labeling and achieve labeling free and non-destructive single-cell measurements. This technology is expected to have a profound impact in the fields of cytology, microbiology and biomedical research, allowing scienti...

    2023-09-07
    Посмотреть перевод
  • Analysis of Development Prospects and Technological Trends in the Optical Industry

    As a core supporting field of modern technology, the optical industry has broad and diversified development prospects, benefiting from the cross drive of multiple emerging technologies. The following is a systematic analysis from the perspectives of technology trends, application areas, challenges, and opportunities: Core driving forces and growth areas1. Optical communication and 5G/6GDemand ex...

    04-30
    Посмотреть перевод
  • Researchers have created the first organic semiconductor laser to operate without the need for a separate light source

    OLED is located at the top and is formed by an organic layer between the contacts. Apply voltage to it, inject charge and generate light, which in turn excites organic laser. Organic lasers contain a grating that can generate feedback and diffract some of the laser out of the structure.Organic laserResearchers have created the first organic semiconductor laser to operate without the need for a sep...

    2023-11-29
    Посмотреть перевод