Русский

The University of California has developed a pioneering chip that can simultaneously carry lasers and photonic waveguides

708
2023-08-10 18:28:38
Посмотреть перевод

A team of computer and electrical engineers at UC Santa Barbara, in collaboration with several colleagues at Caltech and another colleague at Anello Photonics, has developed a first-of-its-kind chip that can carry both laser and photonic waveguides. In a paper published in the journal Nature, the team describes how they made the chip and how it worked during testing.

With the advent of integrated circuits, scientists learned to place transistors, diodes, and other components on a single chip, greatly increasing their potential. In the past few years, researchers working on photonics have hoped to achieve the same feat. People in the field say that the development of similar photonic chips could lead to more precise experiments with atomic clocks and could also be used for quantum applications. It will also reduce the need for huge optical platforms.

In order for such a chip to work, it must house both the laser and the photon waveguide. For this purpose, engineers have developed plug-in isolators to prevent reflections and thus avoid instability in the absence of plug-in isolators. Unfortunately, this method requires the use of magnetism, which causes problems in production. In this new effort, the research team found a way to overcome these problems and create the first truly usable composite chip.

To make the chip, the researchers first placed ultra-low loss silicon nitride waveguides on a silicon substrate. They then covered the waveguide with a variety of silicon and installed a low-noise indium phosphate laser on the waveguide. By separating the two components, the team prevented damage to the waveguide during etching.

The team notes that separating the two components also requires the use of a redistribution layer made of silicon nitride to allow interaction between the two components via the evanescent field. The distance formed by the silicon layer between the two components minimizes interference.

The researchers first measured its noise levels to test their chip. They found they were satisfied and then used it to create a tunable microwave frequency generator. They describe their chip as "a critical step toward complex systems and networks on silicon."

Source: Laser Network

Связанные рекомендации
  • The advanced laser welding machine has been successfully debugged, helping to make a leap in high-performance battery manufacturing!

    Alexander Battery Technologies, a leading company in the field of battery manufacturing, recently announced that it has successfully debugged the world's most advanced laser welding machine, an innovative initiative that will greatly drive the company's production process.Alexander Battery Technologies, as a company dedicated to supporting original equipment manufacturers in bringing lithium-ion b...

    2024-04-28
    Посмотреть перевод
  • Tokyo Institute of Technology collaborates with EX Fusion to promote laser fusion energy closer to commercialization

    Recently, Tokyo Institute of Technology and EX Fusion established a collaborative research group focused on promoting liquid metal equipment to achieve commercial laser fusion reactors. The two sides held an official signing ceremony in Tokyo on October 11th, marking the official start of their cooperation.The EX Fusion Liquid Metals Collaborative Research Group was established with the support of...

    2023-10-17
    Посмотреть перевод
  • French silicon optical company Scintil realizes the integration of III-VI DFB lasers and amplifiers with standard silicon optical technology

    Recently, French silicon photonics company Scintil Photonics announced an exciting collaboration, successfully integrating III-V-DFB lasers and amplifiers with standard silicon photonics technology in the production of Israeli semiconductor company Tower Semiconductor. This milestone collaboration marks a crucial step for Scintil in strengthening its supply chain, bringing new possibilities to com...

    2024-03-05
    Посмотреть перевод
  • Mirico successfully raised $2 million with unique laser dispersion spectroscopy technology

    In the field of high-performance gas sensing intelligence, Mirico stands out with its unique laser dispersive spectroscopy (LDS) technology, successfully raising $2 million in the latest round of financing.Recently, Mirico announced this good news. This financing is led by Shell Ventures and New Climate Ventures, with support from the UK Innovation and Science Seed Fund (UKI2S) and other existing ...

    2024-06-28
    Посмотреть перевод
  • Blue laser enterprise NUBURU obtains $5.5 million bridge financing

    Recently, NUBURU, a supplier of high-power and high brightness industrial blue laser technology in the United States, announced that it has reached bridge loan agreements ("bridge loans" or "bridge financing") with existing and new institutional investors.The principal of this bridge financing is $5.5 million, aimed at providing funding for the company until it obtains long-term credit financing,...

    2023-11-23
    Посмотреть перевод