Русский

The wide application of laser plastic welding technology in the field of automobile manufacturing

466
2024-09-26 13:52:28
Посмотреть перевод

With the rapid development of society, people's demands for energy conservation, emission reduction, and safety in automobiles are increasing. Automobile manufacturers are seeking lightweight manufacturing processes for automobiles, changing traditional component packaging processes, and so on. Laser plastic welding technology has emerged, and below is a brief sharing of the application of plastic laser welding technology in the field of automotive manufacturing.


Diagram of Automotive Plastic Parts Products



A plastic finished product on a car may be made of multiple materials or components. To combine the various components, mechanical fasteners, adhesives, and welding processes can be used for processing. Among these three joining methods, mechanical fasteners can quickly connect the two components, but the leak proof function of the joint is poor, and local stress can easily cause separation between polymer materials; Adhesive can form seams with excellent leak proof function, but it is difficult to handle and has a slow curing speed. At the same time, when using adhesive bonding, there are high requirements for joint preparation procedures and surface cleanliness; The welding process has a better effect, producing adhesive and stable seams, with mechanical properties similar to the parent material, and a variety of welding forms. Different welding processes can be used according to different materials, sizes, and applications.

A plastic finished product on a car may be made of multiple materials or components. To combine the various components, mechanical fasteners, adhesives, and welding processes can be used for processing. Among these three joining methods, mechanical fasteners can quickly connect the two components, but the leak proof function of the joint is poor, and local stress can easily cause separation between polymer materials; Adhesive can form seams with excellent leak proof function, but it is difficult to handle and has a slow curing speed. At the same time, when using adhesive bonding, there are high requirements for joint preparation procedures and surface cleanliness; The welding process has a better effect, producing adhesive and stable seams, with mechanical properties similar to the parent material, and a variety of welding forms. Different welding processes can be used according to different materials, sizes, and applications.

Welding of plastic components
The so-called welding of plastic components refers to the use of heating to melt the surfaces of two thermoplastic components simultaneously, and to combine the two components into one under external force.

What are the welding processes for plastic parts
Plastic welding processes can be divided into two categories: one is mechanical mobile welding processes, including ultrasonic welding, friction welding, and vibration welding; The second is the external heating welding process, including hot plate welding, hot gas welding, and implant welding. According to different heating methods, it can also be divided into heating tool welding, induction welding, ultrasonic welding, high-frequency welding, hot plate welding, laser welding, vibration friction welding, infrared welding, hot pile welding, and hot air welding.

Plastic parts can be seen everywhere on the exterior, interior, functional, and structural components of modern vehicles. Replacing traditional metal materials with plastic has achieved a very outstanding weight reduction effect, which is of great significance for saving energy and reducing greenhouse gas emissions.

Replacing metal with plastic intake manifolds in automobiles can reduce mass by 40% to 60%, with a clear surface and low flow resistance, which can improve engine performance and play a positive role in improving combustion efficiency, reducing fuel consumption, and reducing vibration and noise. According to statistics, there are currently dozens of types of plastics used in automobiles, including polypropylene, polyethylene, polyurethane, polyvinyl chloride, ABS, nylon, and thermosetting composite materials. The average amount of plastic used per car accounts for 5% to 10% of the car's weight, and the requirements for lightweight, safety, and decorative features have also driven the progress of plastic laser welding technology in the automotive field.

At present, plastic laser welding technology has been successfully applied in the manufacturing industry of automotive bumpers, instrument panels and dashboards, brake lights, airbags, car toolboxes, car door panels, and other engine related components. With many traditional metal components starting to be replaced with plastics, such as intake manifolds, instrument pointers, radiator reinforcements, fuel tanks, and filters, there is a particularly good opportunity for the application and discussion of new technologies in the field of plastic welding. Low energy consumption, high-efficiency, non-toxic, and pollution-free welding equipment will become the trend of technological progress in automotive welding lines in the future.

Source: Yangtze River Delta Laser Alliance

Связанные рекомендации
  • The scientific research team of Shenzhen University of Technology has discovered a new mechanism of attosecond pulse coherent radiation

    Recently, a team of Professor Ruan Shuangchen and Professor Zhou Cangtao from Shenzhen University of Technology proposed for the first time internationally a physical solution based on the generation of attosecond pulses and subperiodic coherent light shock radiation from a superluminal plasma wake field, and explained a new coherent radiation generation mechanism dominated by collective electron ...

    2023-10-14
    Посмотреть перевод
  • Widely tunable terahertz laser enhances photo induced superconductivity in K3C60

    Researchers at the Max Planck Institute for Material Structure and Dynamics (MPSD) in Hamburg, Germany, have long been exploring the effect of using custom laser drivers to manipulate the properties of quantum materials to deviate from equilibrium states.One of the most eye-catching demonstrations of these physics is unconventional superconductors, where enhanced electron coherence and super trans...

    2023-10-13
    Посмотреть перевод
  • Han's Laser New Product Debuts at 2025 Munich Shanghai Light Expo

    New product launch of "Blue Hurricane" red blue integrated laser1. Ultra high power: The "red blue integrated" laser, with optimized optical path design and heat dissipation system, can stably output power exceeding industry standards, meeting high demand application scenarios.2. Dual high brightness: Integrating advanced wavelength modulation technology and materials science, both red and blue l...

    03-07
    Посмотреть перевод
  • Shanghai Institute of Optics and Fine Mechanics has made progress in synchronously pumped ultrafast Raman fiber lasers

    Recently, the research team led by Zhou Jiaqi from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of synchronously pumped ultrafast Raman fiber lasers. The related achievements were published in Optics Express under the title "Revealing influence of timing jitter on ultra fast...

    06-07
    Посмотреть перевод
  • Scientists are using lasers to create lunar paving blocks

    Original Hal Bowman 9000 Scientific RazorThe 3 kW laser power output on a 45 mm laser spot consolidates the interlocking structure within the EAC-1A powder bed. Source: Jens Kinst, BAMBy using lasers to melt lunar soil into stronger layered materials, it is possible to build paved roads and landing pads on the moon, according to a concept validation study in a scientific report. Although these exp...

    2023-10-14
    Посмотреть перевод