Русский

SPIE Optics and Photonics 2025: Kyle Myers from Puente elected as SPIE Chair

846
2025-08-08 14:26:09
Посмотреть перевод

The founder and principal of Puente Solutions Kyle J. Myers has been elected to serve as the 2026 Vice President of SPIE, the international society for optics and photonics. With her election, Myers joins the SPIE presidential chain. She will serve as president-elect in 2027, and as the Society’s president in 2028.

 



Newly-elected: Myers, McNally, Rubinsztein-Dunlop, Wade, Medicus, and Erdmann


The 2025 SPIE President Peter de Groot, Zygo Corp. scientist emeritus, made the announcement along with other SPIE election results at this year’s Annual General Meeting of the Society on 5 August, during SPIE Optics + Photonics, in San Diego. Terms begin on 1 January 2026.

Myers, founder and principal at Puente Solutions, is also currently a fellow at the Hagler Institute for Advanced Study at Texas A&M University. Her areas of technical research across her career in government, industry, and academia have included medical imaging and biomedical optics; signal processing and AI/ML; vision science and perception; and technical translation from ideation to market authorization.

From 1987 until 2021, Myers worked at the FDA’s Center for Devices and Radiological Health; her final role there was as Director of the Division of Imaging, Diagnostics, and Software Reliability.

An SPIE Fellow, Myers was the recipient of the 2024 SPIE Harrison H. Barrett Award in Medical Imaging, and a 2006 recipient of the Joseph W. Goodman Book Writing Award. She sits on the Society’s Strategic Planning Committee and its Publications Committee. From 2018-2023, she served on the SPIE Board of Directors.

She has participated as an SPIE Awards Program Chair, an associate editor for the Journal of Medical Imaging, and, from 1996-2005, as part of the program committee for the Image Processing Conference at SPIE Medical Imaging. Myers is currently on the program committee for the Image Perception, Observer Performance, and Technology Assessment conference at SPIE Medical Imaging. She is also a fellow of AAPM, AIMBE, and Optica, and a member of the National Academy of Engineering.

Myers was featured in the 2014 SPIE Women in Optics Planner where she stated: “I have devoted my career to advancing approaches for evaluation of medical imaging devices from a subjective practice to an objective and quantitative science; my lab develops methods for evaluating novel medical imaging devices and provides independent, objective data regarding device performance.”
“This is a type of lab science that is not done elsewhere. It is extremely rewarding to have a research job that is concretely assisting in getting new medical products to patients as quickly as possible, based on solid scientific evidence of their benefits.”

“Through SPIE we are working for more than the advancement of optics and photonics technologies — we are working for the betterment of the human condition,” said Myers. “I look forward to serving SPIE as we work together to do even more to educate, empower, grow, and support optics and photonics professionals around the world.”

Other SPIE electees

Alongside Myers, University of Rochester Professor Julie Bentley will serve as the 2026 SPIE President while Cather Simpson of the University of Auckland and Orbis Diagnostics, will serve as President-Elect. Jim McNally, CEO of StratTHNK Associates, was elected to serve as the 2026 SPIE Secretary/Treasurer.

The following newly-elected Society Directors will serve three-year terms from 2026-2028:

Halina Rubinsztein-Dunlop, professor of physics at the University of Queensland and deputy director of the Australian Research Council’s Center of Excellence in Quantum Biotechnology.
Jessica Wade, research fellow and lecturer at Imperial College London.
Kate Medicus, CEO and owner of Ruda Optical.
Rainer Erdmann, CEO and founder of PicoQuant.

The SPIE nominating committee accepts recommendations for the election slate on an ongoing basis. Directors, who serve a three-year term, are expected to attend and participate in three board meetings each year.

Source: optics.org

Связанные рекомендации
  • Shanghai Institute of Optics and Mechanics proposes a new solution for quartz glass as a visible light laser material

    Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on rare earth ions Dy3+doped quartz glass as a yellow laser material, and the relevant research results were published in the Journal of the American Ceramic Society as "Effect o...

    2024-06-05
    Посмотреть перевод
  • The creator of a computer that uses lasers to perform complex tasks at the speed of light has announced a breakthrough in high-performance computing

    LightSolver's new LPU100 system is powered by 100 lasers and can solve the most challenging problems through up to 120100 combinations.This computer was created by Dr. Ruti Ben Shlomi, CEO of LightSolver and Dr. Chen Tradonsky, CTO, a physicist at the Rehowatt Weizmann Institute for Science.It is not suitable for household use because its high computing power exceeds individual needs, but it is su...

    2024-03-21
    Посмотреть перевод
  • TriLite has partnered with AMS OSram to develop AR smart glasses displays

    TriLite has announced a technical collaboration with ams OSRAM, a global leader in smart sensors and transmitters. Ams Osram will supply its sub-assembled RGB laser diode to "light up" TriLite's Trixel® 3 laser beam scanner (LBS), the world's smallest AR smart glasses projection display.The award-winning Trixel® 3 LBS offers breakthrough compactness and light weight, as well as a bright an...

    2023-09-06
    Посмотреть перевод
  • Trends and Reflections on the Laser Industry in 2025

    In 2024, the laser industry will still reach new heights, although some predicted concerns have been fulfilled! From beginning to end, the development path of the manufacturing industry has been full of uncertainty, but as time passes and we enter a new year, new technologies continue to emerge like mushrooms after rain.In 2025, practitioners in the laser and manufacturing industries still face ma...

    01-02
    Посмотреть перевод
  • Particles have "fuzzy memory" in solid-state batteries

    When you shoot a laser at a solid-state battery, you find that the particles inside are not thrown into the chaos. This surprised a team of researchers from the United States and the United Kingdom.The team discovered the persistence of memory in ions that help move electricity around solid-state batteries.This discovery has improved the understanding of solid-state batteries, which are candidate...

    2024-02-18
    Посмотреть перевод