Русский

Xi'an Institute of Optics and Fine Mechanics has made new progress in the research of intelligent optical microscopy imaging

359
2024-09-09 16:34:45
Посмотреть перевод

Recently, the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made new progress in the research of intelligent optical microscopic imaging, and the research results were published online in the international high-level academic journal Opto Electronic Advances (IF: 15.3). The first author of the paper is Tian Xuan, a 2024 doctoral candidate of Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, and Li Runze, a special research assistant. The corresponding authors are Associate Researcher Bai Chen and Researcher Yao Baoli.

The phase information carried by light waves can reveal the thickness, refractive index, geometric morphology, and other characteristics of matter. As it cannot be directly sensed by optical sensors, interference methods are usually required for detection. Digital in-line holographic microscopy (DIHM) has become a commonly used method for quantitative phase imaging due to its high spatial bandwidth product, label free, non-invasive, and fast imaging speed. However, in practical applications, the interference of twin images during holographic reconstruction and the loss of sub-pixel information caused by the use of large pixel size detectors can hinder high-quality DIHM imaging. Deep learning, with its noise suppression and inverse problem solving capabilities, has become a powerful tool for DIHM imaging and pixel super resolution (PSR). However, most current deep learning based methods rely on supervised learning and training instances to optimize their weights and biases. Collecting a large number of holograms and their corresponding high-resolution raw phase maps is not only time-consuming in experiments, but also very difficult to collect training data. In addition, the trained model has very limited generalization to samples that are different from the training data.

Figure MPPN-PSR phase imaging: (a) Full field pixel super-resolution phase imaging of TOMM20 antibody cells, (b) Comparison of different PSR phase reconstruction methods, and (c) corresponding optical thickness maps.

In response to the above issues, the research team proposed a non trained neural network for DIHM pixel super-resolution phase imaging, namely the Multi Prior Physical Enhancement Neural Network (MPPN-PSR), which can reconstruct phase information of samples from coaxial holograms with high throughput, high accuracy, and high resolution. MPPN-PSR combines neural networks and physical models, encapsulating physical model priors, sparsity priors, and depth image priors in an untrained deep neural network. This avoids the need for a large amount of training data for neural networks and does not require any additional hardware design. It can achieve twin image suppression, pixel super-resolution, and high-throughput phase imaging with only a single hologram. Compared with the phase recovery method without PSR, the MPPN-PSR method increases the pixel resolution of the image by three times. Compared with the classic phase recovery method Twist TV-PSR that combines pixel super-resolution, the optical resolution is increased by about two times. Moreover, due to the use of the inherent large field of view of the low magnification objective lens, MPPN-PSR improves the spatial bandwidth product of the imaging. This research result is expected to provide reference for other digital holographic imaging schemes and be widely applied in the fields of biomedical and industrial measurement.

In recent years, the Yao Baoli team of the State Key Laboratory of Transient Optics and Photonics Technology has conducted in-depth research on intelligent optical microscopic imaging technology, and formed a variety of new optical microscopic imaging technologies, which have achieved significant improvements in imaging functions, information acquisition dimensions, performance indicators, etc., including three-dimensional imaging of full-color wide field micro light slices, fast super resolution three-dimensional imaging of confocal microscopy, fast three-dimensional microscopic imaging of light slices, etc., as well as high-resolution and high signal noise ratio microscopic imaging of light slices, computational imaging through scattering media, etc., which are achieved using compression sensing technology. The relevant research results were published in Photon Journals such as Res, Opt Lett, Opt Express, etc. In addition, the team has conducted long-term theoretical and experimental research on optical microscopy imaging and optical micro manipulation based on light field regulation. They have published more than 300 papers in journals such as PNAS, Nature Com., PRL, Rep. Prog. Phys., Adv. Opt. Photon. They have been granted multiple national invention patents and have won awards and honors such as the first and second prizes of Shaanxi Provincial Science and Technology Innovation Team and Shaanxi Provincial Key Science and Technology Innovation Team.

Source: Opticsky

Связанные рекомендации
  • New Progress: III-V Laser and Silicon Optics Technology Achieve Single Chip High Integration

    Recently, Scientific Photonics, a supplier of silicon photonic integrated circuits (PICs) headquartered in Grenoble, announced that it has successfully integrated III-V-DFB lasers and amplifiers with standard silicon photonic technology into the production process of Tower Semiconductor.By utilizing proprietary technology and standard silicon photonics, Scientific Photonics has achieved full inte...

    2024-03-01
    Посмотреть перевод
  • Researchers have developed a QCL DFB continuous laser for gas detection

    Alpes Laser was founded in 1998 in Nazhatel, Switzerland and was the first company to bring quantum cascade lasers to the market. It released its first continuous laser in 2001 and its first high gain laser in 2009, thus maintaining this priority position.In 2004, the first commercial laser was introduced.Principle: In a single mode laser, the grating is etched into the active region to force the ...

    2023-08-16
    Посмотреть перевод
  • Leya Invents Next Generation Agricultural Blue Laser Weeding Technology

    Laudado&Associates LLC (L&A), an agricultural technology development company headquartered in California, announced the Autonomous Agricultural Solutions Conference held at FIRA Robotics&last week in Salinas, California.This patent pending technology is a completely new design, designed by L&A, aimed at maximizing the commercial feasibility of laser weeding and thinning. It utilize...

    2023-09-27
    Посмотреть перевод
  • Atomstack Maker A5 V2: A laser engraving machine suitable for beginners

    In the recent DIY field, innovative and increasingly affordable laser engraving machines have emerged, mainly designed for first-time users in this field. A particularly noteworthy example in this regard is the Atomstack Maker A5 V2 model. This device is known for its versatility and ease of use, making it an ideal choice for beginners in the world of laser engraving.The Atomstack Maker A5 V2 is a...

    2024-01-03
    Посмотреть перевод
  • Lumibird, a well-known French optoelectronics company, increased its lidar production capacity by 16% year-on-year and was boosted by strong market demand

    On July 24, Lumibird, a well-known French optoelectronics company, released its latest semi-annual report. In the first half of the year, Lumibird's revenues were 97.2 million euros, up 16 percent from the same period last year. Of this, the Optoelectronics division contributed 45.9 million euros and the remaining 51.3 million euros came from its medical division. In the second quarter (Q2) ended ...

    2023-08-04
    Посмотреть перевод