Русский

More penetrating than X-rays μ Meson imaging is expected to be advanced with high-power lasers

847
2023-11-01 14:59:21
Посмотреть перевод

μ Mesons are naturally occurring subatomic particles that can penetrate much deeper dense matter than X-rays. Therefore, μ Meson imaging can enable scientists to capture images of nuclear reactors, volcanoes, tsunamis, and hurricanes. However, this process is slow, as it occurs naturally μ The low flux of mesons requires several months of exposure time for the image.

It is understood that scientists at the Lawrence Livermore Laboratory (LLNL) Ignition Facility (NIF) in the United States have proposed a plan called "Science and Safety Intensive Compact μ The meson source "(ICMuS2) aims to quickly generate μ Mesons, using high-power lasers to accelerate capture μ The time required for meson images, thereby reducing the required exposure time.

This project is a huge challenge for particle physics detection. John Harton from the High Energy Physics Group in the Department of Physics at Colorado State University said. John Harton will lead the Colorado State University team responsible for developing collaborative projects μ The meson detector, he said:“ μ The number of meson particles far exceeds that of other particles, and we are using various tools to screen them.

μ The key step in sub generation is the wake left by the ultra intense short laser pulse accelerating the propagation of electrons in the plasma.
ICMuS2 plans to develop a portable, laser based μ The technical design of meson emitters has a flux greater than that of naturally occurring ones μ Mesons are several orders of magnitude larger and can be used for a wide range of imaging applications. This includes special nuclear material exploration, mining, and geophysics. Brendan Reagan, from NIF and the Advanced Photonics Technology Project in Photonics Science, stated that in addition to laser development, the project will also combine advanced numerical simulations of high-energy particle physics, plasma physics, high-performance computing systems, as well as system engineering and integration.

This work was carried out in collaboration with the extreme light infrastructure ERIC (ELI) of the Czech ELI beamline facility, Colorado State University, University of Maryland (UMD), Lockheed Martin, XUV Lasers, and Lawrence Berkeley National Laboratory (LBNL). LLNL also participated in another activity under the MuS2 project led by LBNL.

The preliminary experiment will be conducted using a plasma waveguide developed by UMD in an advanced laser at the Extreme Photonics High Repetitive Rated Watt Laser Facility at Colorado State University. High energy acceleration and μ The meson generation experiment will be conducted at ELI Beamlines using its L4-Aton 10-PW laser system.

The first phase of this four-year plan will focus on principle verification experiments and the impact of laser generated μ A clear demonstration of mesons. The second stage will attempt to demonstrate high energy μ Production and Transportability of Mesons μ Design of meson sources.

In addition, all aspects of the plan are based on the development of large-aperture Thulium laser technology under the guidance of the LLNL laboratory's research and development program, as well as the investment in laser driven accelerators by the High Energy Physics and Accelerator Research and Production Office of the US Department of Energy Science Office.

Source: Laser Manufacturing Network

Связанные рекомендации
  • The role of PTFE in laser processing

    Polytetrafluoroethylene (PTFE) has improved the efficiency and repeatability of nanosecond and picosecond laser processing technologies used in microelectronics and display glass manufacturing. In the field of precision manufacturing, the demand for efficient and repeatable processes is crucial. The laser structure of glass and laser ablation of silicon substrates are key areas where precision p...

    2024-07-26
    Посмотреть перевод
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well...

    2024-04-30
    Посмотреть перевод
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the generation of third harmonic in laser air filamentation

    Recently, the team from the State Key Laboratory of Intense Field Laser Physics, Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences found that the third-order harmonics induced by air filamentation of high repetition rate femtosecond lasers have significant self jitter. To solve this bottleneck problem, a solution based on an external DC electric field was proposed, which sign...

    2024-10-10
    Посмотреть перевод
  • Gooch&Housego successfully acquires Phoenix Optical Technologies

    Recently, renowned precision optical technology manufacturer Gooch&Housego (G&H) announced the successful acquisition of Phoenix Optical Technologies, a precision optical manufacturer located in St. Asaf, Wales, UK. The acquisition transaction amounts to £ 6.75 million, which not only consolidates G&H's market position in the aerospace and defense sectors, but also significantly expa...

    2024-11-04
    Посмотреть перевод
  • TRUMPF high-power laser dynamic beam shaping technology creates opportunities for the electric vehicle industry

    It is reported that researchers from TRUMPF in Germany reported research on using dynamic beam shaping of high-power lasers to improve the productivity of hairpin stators, creating opportunities for the electric vehicle industry. Relevant research was published in "PhotonicsViews" under the title "Unlocking opportunities for the EV industry with beam shaping of high-power lasers".The electric vehi...

    2024-07-01
    Посмотреть перевод