Русский

What is field assisted additive manufacturing?

199
2024-07-29 14:03:17
Посмотреть перевод

Dr. Tan Chaolin from the Singapore Institute of Manufacturing Technology, in collaboration with China University of Petroleum, Shanghai Jiao Tong University, Princeton University, University of Malta, Huazhong University of Science and Technology (Professor Zhang Haiou), University of California, Irvine, Hunan University, and EPM Consulting, published an article titled "Review on Field Assisted Metal Additive Manufacturing" in the top manufacturing journal, International Journal of Machine Tools and Manufacturing. The Singapore Institute of Manufacturing Technology, Shanghai Jiao Tong University, and Princeton University are the corresponding author units.

This' super team 'elaborates on the current progress of field assisted additive manufacturing technology, reveals the interaction mechanism between fields and deposited metal materials, summarizes the correlation between auxiliary fields, microstructures, and mechanical properties, and looks forward to research opportunities in field assisted additive manufacturing.

Overview of Various Types of Field Assisted Additive Manufacturing (FAAM) Technologies

Field assisted additive manufacturing
Additive manufacturing technology provides unprecedented design freedom and manufacturing flexibility for processing complex components. It can manufacture parts that cannot be manufactured by other processes while minimizing processing steps. Typical metal additive manufacturing processes include laser powder bed melting (LPBF), laser energy deposition (LDED), electron beam melting (EBM), and arc additive manufacturing (WAAM), each with their own metallurgical characteristics, advantages, and applicability. The construction speed of LPBF is relatively low, but it has excellent capabilities in handling complex geometric shapes, such as lattice structures, advanced tools (such as mold inserts with conformal cooling channels), customized medical implants, etc; In contrast, LDED and WAAM have lower dimensional resolution and much higher deposition rates than LPBF, making them suitable for large-scale component manufacturing. In addition, the flexibility of material feed in LDED and WAAM has increased, allowing for the deposition of multiple materials within the same layer and across layers. The flexible tool path in LDED can repair large free-form surface parts.

Field assisted typical metal additive manufacturing technology
Therefore, although these technologies have numerous advantages compared to traditional manufacturing methods, there are still some problems and bottlenecks that hinder their large-scale industrial applications. For example, materials with poor printing adaptability may have defects, resulting in larger columnar dendrites with poor anisotropic mechanical and fatigue properties. In order to address these issues and fully leverage the potential of additive manufacturing technology, new methods have been studied for customizing microstructures, innovating equipment and devices, and introducing new concepts. Field assisted additive manufacturing (FAAM) is a new approach that combines the inherent advantages of different energy fields to overcome the limitations of additive manufacturing. Typical auxiliary fields applied in additive manufacturing processes include magnetic field, acoustic field, mechanical field, and thermal field. In addition, there are some emerging technologies such as plasma field, electric field, and coupled multi field as auxiliary energy fields.

The mechanism and advantages of field assisted additive manufacturing
Professor Tan Chaolin's research team has reviewed how the current mainstream magnetic field, acoustic, mechanical, thermal, electrical, and plasma field assisted technologies affect the metal additive manufacturing process. They believe that the assisted fields can affect the convection and dynamics of the melt pool, alter the temperature distribution and thermal history during material solidification, and cause stress or plastic deformation in deposited materials; A detailed review and discussion were conducted on how auxiliary fields affect melt pool dynamics, solidification dynamics, densification behavior, microstructure and texture, mechanical properties, and fatigue performance; We also discussed the research gap and further development trends of field assisted additive manufacturing.

Schematic diagram of using magnetic field assisted additive manufacturing


Schematic diagram of using sound field assisted additive manufacturing


Schematic diagram of using thermal field assisted additive manufacturing


Schematic diagram of using mechanical deformation assisted additive manufacturing

This critical review provides researchers with complete and up-to-date information on field assisted additive manufacturing, which helps to identify the shortcomings and advantages of each field assisted technology and improve maturity and technological readiness.

Field assisted additive manufacturing is expected to have high flexibility in handling high geometric complexity components and good scalability in depositing large or small free-form components. This poses a high challenge for process and system development as it requires a uniform field distribution. The breakthrough of uniform field distribution will improve the flexibility and scalability of field assisted technology, and make its application mature and scalable.

The certification and commercialization of field assisted additive manufacturing systems is another direction of progress, as most of the current field assisted additive manufacturing equipment is experimental and lacks strict testing and certification. The laboratory stage technology may have stability and repeatability issues, which are insufficient to handle reliable industrial products. Therefore, strict system certification is required to commercialize field assisted technology. At the same time, it is necessary to develop and compile system qualification standards to guide and certify qualifications for commercial use. Reliable commercial equipment will attract more researchers to advance and implement field assisted technologies in industrial applications.

Source: AM union Additive Manufacturing Master's and PhD Alliance

Связанные рекомендации
  • Additive Manufacturing Software Market 2025: Analysis, Data, and Forecasting

    In March 2025, Additive Manufacturing Research (AMR) released its latest 3D printing market research report, "AM Software Markets 2025: Analysis, Data, and Forecast," which provides a comprehensive and in-depth analysis of the 3D printing software industry. The latest research findings indicate that global revenue from additive manufacturing (AM) software is expected to grow from $2.44 billion in ...

    03-17
    Посмотреть перевод
  • Hexconn announces the launch of a new modular 3D laser scanner designed specifically for large-scale surface inspection

    The new Absolute Scanner AS1-XL adopts the same "Shine" technology as its flagship product Absolute Scanner AS1, allowing it to collect clean 3D data from the most challenging surface types at a very high speed.The new scanner has a wider scanning line and is designed specifically for inspecting large surfaces and deep cavities in inspection applications such as aerospace panels, ship propellers, ...

    2023-09-27
    Посмотреть перевод
  • MIT researchers have demonstrated a novel chip based resin 3D printer

    Researchers from the Massachusetts Institute of Technology and the University of Texas at Austin showcased the first chip based resin 3D printer. Their concept verification tool consists of a millimeter sized photon chip that emits a programmable beam of light into resin holes, which solidify into a solid structure when exposed to light.The prototype processor does not have mobile components, but ...

    2024-06-17
    Посмотреть перевод
  • New discoveries bring progress in photon calculation

    International researchers led by Philip Walther from the University of Vienna have made significant breakthroughs in the field of quantum technology, successfully demonstrating quantum interference between multiple single photons using a new resource-saving platform. This work, published in Science Advances, represents a significant advancement in the field of quantum computing and paves the way f...

    2024-04-27
    Посмотреть перевод
  • Topcon Announces the Launch of LN-50 3D Laser

    Earlier this month, before the annual Intergeo conference held in Germany, Topcon Positioning Systems announced the latest member of its robot total station series. This California based company launched the LN-50 3D laser in early October, marking their latest layout navigator, which has a range of 50 meters.They pointed out that this latest scanner is specifically designed for homebuilders, mech...

    2023-10-25
    Посмотреть перевод