Русский

Significant progress made in 808nm high-power semiconductor laser chips

784
2024-06-14 14:41:24
Посмотреть перевод

The R&D team of Xi'an Lixin Optoelectronics Technology Co., Ltd. (hereinafter referred to as "Lixin Optoelectronics") has made significant progress in 808nm high-power semiconductor laser chips through continuous technological breakthroughs.

808nm semiconductor laser, as an ideal and efficient solid-state laser pump source, plays an important role in advanced manufacturing, mechanical processing, medical beauty, laser display, scientific research, aerospace and other fields. With the increasing demand for efficient laser solutions in the market, high-power and high-efficiency laser chips have become a key factor driving industry development. The company's R&D team has improved the slope efficiency, high-temperature characteristics, and output power of 808nm high-power semiconductor laser chips through structural upgrades and epitaxial technology optimization; By optimizing the cavity surface coating technology, the damage threshold COMD of the chip cavity surface is increased, thereby significantly improving the reliability of the chip.

The test results show that the high-power 808nm COS laser chip packaged in vertical core optoelectronic packaging has an output power of up to 81W and a maximum photoelectric conversion efficiency (PCE) of 57% at QCW 86A, which reflects the excellent high-temperature characteristics, high damage threshold, and high reliability of the product.

The realization of this innovative achievement highlights the profound technological accumulation and outstanding innovative strength of Lixin Optoelectronics in the field of high-power semiconductor laser chips. It not only enhances the company's competitive position in the domestic market, but also promotes the advancement of solid-state laser technology using such high-power laser chips as pump sources.

Source: Lixin Optoelectronics

Связанные рекомендации
  • Halloween\Christmas Laser Processing Art Carnival !!

    Chanelink Halloween\Christmas Laser Processing Art CarnivalShow your design talent and win a cool laser engraver cutter.TimeUpload of work and canvassing period: October 25, 2023 - December 25, 2023Winner announcement time : December 29, 2023ContentEligible participant:Laser industry practitioners, enthusiasts, who must be at least 18 years old.Awards:First prize (1...

    2023-10-25
    Посмотреть перевод
  • Quantum computing company secures $500 million in funding

    Quantum Computing Inc. (QCI), a startup based in the United States, recently opened a foundry for integrating photonics with thin-film lithium niobate (TFLN). The company announced that it has raised $500 million in total proceeds through a new private equity offering.It means that the Nasdaq-listed New Jersey startup, whose foundry is located within Arizona State University’s Research Park in Tem...

    09-30
    Посмотреть перевод
  • Deep Photon Network Platform, Empowering Any Functional Photon Integrated Circuit

    The widespread application in the fields of optical communication, computing, and sensing continues to drive the growing demand for high-performance integrated photonic components. Recently, Ali Najjar Amiri of Kochi University in Türkiye and other scholars proposed a highly scalable and highly flexible deep photonic network platform, which is used to realize optical systems on chip with arbi...

    2024-03-11
    Посмотреть перевод
  • Laserline introduces the first blue 4 kW laser

    Laserline will once again showcase its latest laser systems for joining and deposition welding at this year's Welding & Cutting show in Hall 5. This time the focus is on the world's first blue diode laser with an output power of 4 kW, which is said to have been developed for processing copper components.Its 445 nanometer wavelength is absorbed by copper and copper alloys, which is five t...

    2023-09-06
    Посмотреть перевод
  • Single photon avalanche diode for millimeter level object recognition using KIST

    LiDAR sensors are crucial for implementing modern technologies such as autonomous driving, AR/VR, and advanced driving assistance systems. For example, more accurate shape detection in AR/VR devices and smartphones depends on the improved range resolution of medium and short range LiDAR. This requires a single photon detector with improved timing jitter performance.LiDAR calculates the distance an...

    2024-02-03
    Посмотреть перевод