Русский

Single photon avalanche diode for millimeter level object recognition using KIST

1030
2024-02-03 10:17:08
Посмотреть перевод

LiDAR sensors are crucial for implementing modern technologies such as autonomous driving, AR/VR, and advanced driving assistance systems. For example, more accurate shape detection in AR/VR devices and smartphones depends on the improved range resolution of medium and short range LiDAR. This requires a single photon detector with improved timing jitter performance.

LiDAR calculates the distance and generates a three-dimensional image by measuring the time it takes for photons released by the transmitter to impact an object, reflect and return to the receiver. The higher the accuracy of object recognition, the smaller the value of "timing jitter", which is a small change in detection time when a single photon detector on the receiver converts an optical signal into an electrical signal.

According to the Korean Academy of Science and Technology, under the guidance of Dr. Myung Jae Lee, a team from the Institute of Postsilicon Semiconductors has created a "single photon avalanche diode" that can recognize millimeter level objects using 40nm backlit CMOS image sensor technology.

The development of SPAD is extremely difficult, and currently only Sony in Japan has successfully commercialized LiDAR based on SPAD and supplied it to Apple products based on its 90nm backlit CMOS image sensor technology.

Although the timing jitter performance of Sony SPAD is about 137-222 ps, it is not yet sufficient to achieve the user recognition, gesture recognition, and precise shape recognition of objects required for medium and short distance LiDAR applications. Sony's SPAD is more effective than the backlit SPAD reported in the literature.

The single photon sensor element developed by KIST has more than twice the jitter performance at 56 ps, with a distance resolution of about 8 mm, and has great potential as a medium to short range LiDAR sensor element.

Specifically, SPAD was created based on 40nm backlit CMOS image sensor technology through collaborative research with SK Hynix, and is expected to be immediately localized and commercialized.

This study was funded by the Korea Institute of Science and Technology and the Korea National Research Foundation, and was highlighted at the 2023 International Conference on Electronic Devices held in San Francisco, USA on December 12, 2023, from December 9 to 13.

IEDM is one of the most important conferences for semiconductor industry and research professionals, attended by major global semiconductor companies such as SK Hynix, Samsung Electronics, and Intel.

Source: Laser Net

Связанные рекомендации
  • Is CTC technology in the booming new energy industry likely to disrupt the fiber laser industry?

    Recently, the term CTC technology has become a hot topic in the new energy vehicle industry. During the relatively slow period of electrochemical innovation, this structural innovation effectively helped the new energy industry reduce costs and increase efficiency, while also increasing the range of new energy vehicles to a certain extent. However, recently the author learned that the concept of C...

    2023-09-18
    Посмотреть перевод
  • Researchers have created the first organic semiconductor laser that can be operated without the need for a separate light source

    Researchers at the University of St. Andrews in Scotland have manufactured the first organic semiconductor laser to operate without the need for a separate light source - which has proven to be extremely challenging. The new all electric driven laser is more compact than previous devices and operates in the visible light region of the electromagnetic spectrum. Therefore, its developers stated that...

    2023-11-15
    Посмотреть перевод
  • Harvard University and University of Vienna invented tunable laser chips

    Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Vienna University of Technology (TU Wien) have invented a new type of tunable semiconductor laser that shows smooth, reliable, wide-range wavelength tuning in a simple, chip-sized design.Tunable lasers are integral to many technologies, from high-speed telecommunications to medical diagnostics to safet...

    07-16
    Посмотреть перевод
  • Germany and the United States jointly build a $150 million laser equipment laboratory for studying inertial fusion energy and high energy density physics

    German laser Fusion developer Marvel Fusion said it will partner with Colorado State University (CSU) on a new $150 million laser equipment lab to study inertial fusion energy and high energy density physics."It will be home to one of the most powerful laser facilities in the world and an international center for laser fusion energy and high energy density physics research," the company said in a ...

    2023-08-10
    Посмотреть перевод
  • Devices based on optical thermodynamics can guide light without the need for switches

    Researchers from Ming Hsieh's Department of Electrical and Computer Engineering at the University of Southern California have designed the first optical device that follows the emerging optical thermodynamic framework.The work, reported in Nature Photonics, introduces a new way of routing light in nonlinear systems—meaning systems that do not require switches, external control, or digital addressi...

    10-15
    Посмотреть перевод